
Type-Preserving Flow Analysis and Interprocedural Unboxing
Extended Version

Neal Glew
Intel Labs

neal.glew@intel.com

Leaf Petersen
Intel Labs

leaf.petersen@intel.com

Abstract
Interprocedural flow analysis can be used to eliminate otherwise
unnecessary heap allocated objects (unboxing), and in previous
work we have shown how to do so while maintaining correctness
with respect to the garbage collector (GC). In this paper, we extend
the notion of flow analysis to incorporate types, enabling optimiza-
tion of typed programs. We apply this typed analysis to specify and
construct a type-preserving interprocedural unboxing optimization,
and prove that the optimization preserves type and GC safety along
with program semantics. We also show that the unboxing optimiza-
tion can be applied independently to separately compiled program
modules, and prove via a contextual equivalence result that unbox-
ing a module in isolation preserves program semantics.

1. Introduction
Many languages and compilers use a uniform object representation
in which every source level object is represented at least initially by
a heap allocated object. Such a representation allows polymorphic
functions to be compiled once and enables the implementation of
features that use runtime type information. In this representation
machine integers and floating-point numbers are placed in a single-
field object, a box, and this operation is called boxing. Operations
such as addition require first projecting the number from the box
(unboxing), then performing the operation, and finally creating a
new box for the result. Boxing and unboxing operations add con-
siderable overhead, and thus it is highly desirable to remove them
when possible – e.g. when polymorphism or features requiring run-
time type information are not being used. We refer to the general
class of optimizations that attempt to remove unnecessary box and
unbox operations as unboxing optimizations. We refer to unboxing
optimizations that attempt to eliminate boxing and unboxing across
function boundaries as interprocedural unboxing. We also include
in this latter category optimizations (such as the one given in this
paper) that attempt to unbox objects written to and read from other
objects in the heap.

Interprocedural unboxing presents additional challenges in a
typed setting, since type information must be updated to reflect
any unboxing. A box might flow to an argument in an application,
and the parameter of the called function might flow to an unbox
operation. If the optimization decides to remove the box and unbox

[Copyright notice will appear here once ’preprint’ option is removed.]

operations then it must also remove the box type on the parameter.
In other words, typed unboxing requires not just rewriting uses and
definitions in the traditional sense, but also rewriting intermediate
points in the program through which the unboxed values flow. At
a high level then, the optimization can be viewed as selecting a
set of box operations, unbox operations, and box types to remove.
Such a selection has a global consistency requirement—a box type
should only be removed if all boxes that flow to it are removed,
a box operation should only be removed if all unbox operations
it flows to are removed, and so on. Thus choosing a set of boxed
objects to eliminate and rewriting the program to reflect this choice
in a consistent manner requires knowing what things flow to what
points in the program, a question that flow analyses are designed
to answer. In this paper we use the results of flow analysis to
formulate correctness conditions for unboxing and then prove that
those conditions ensure correct optimization.

In previous work [8] we considered the simpler problem of
rewriting garbage-collector (GC) meta-data rather than full types.
An accurate GC requires specifying for each field of each object
and each slot of each stack activation frame whether it contains
a pointer into the GC heap or not (contains a machine integer,
floating-point number, etc.). As with types, when interprocedurally
unboxing such meta-data must be rewritten in a globally consis-
tent manner. Our previous paper showed how to do this rewriting
correctly using the results of a flow analysis in a whole program set-
ting. In this paper we extend these ideas to develop a methodology
for dealing with interprocedural optimization of statically typed
languages (including universal polymorphism) in a type preserv-
ing fashion. We also show that this methodology does not depend
on whole program compilation and can be extended to correctly
optimize independent program modules.

In the following sections, we begin by defining a strongly typed
polymorphic core language in which boxing has been made ex-
plicit. As in our previous paper we formalize a notion of GC safety
for our language and show that well-typed programs are GC safe
throughout execution. Next we specify a set of abstract conditions
that a reasonable flow analysis must satisfy, with the property that
any flow analysis that satisfies these conditions can be used in our
framework to optimize programs. The main section of the paper
defines an unboxing optimization parameterized over a choice of
objects to unbox, and gives a set of correctness conditions under
which such a choice is guaranteed to preserve typing and preserve
semantics. We show that this set of correctness conditions is sat-
isfiable by constructing a simple unboxing algorithm that satisfies
these conditions. Finally we extend the system slightly by defining
a notion of unboxing for modules and show that it is correct in the
sense that a module is contextually equivalent to its unboxing.

While our paper is specifically about the concrete optimiza-
tion of unboxing, the ideas used here generalize naturally to other
optimizations that change the representation of objects in a non-

1 2012/3/11

local fashion. Such optimizations include dead-field elimination,
dead-parameter elimination, sum representation optimizations, and
thunk elimination in lazy languages. All of these impose similar re-
quirements for rewriting types and GC meta-data in a globally con-
sistent fashion. Flow analyses can be used to specify and implement
these (and others), and we believe (based on practical experience in
our compiler) that the framework presented here extends naturally
to such optimizations. As far as we know, this and our previous
paper are the first to use a flow analysis to rewrite types and GC
meta-data in a globally consistent fashion, and to use a flow anal-
ysis to formulate correctness conditions for this rewriting process
and prove these conditions sound.

2. A type and GC safe core language
Consider the following untyped program (using informal notation),
where box denotes a boxing operation that wraps its argument in
a heap-allocated structure, and unbox denotes its elimination form
that projects out the boxed item from the box:

let f = λx.(boxx) in unbox(unbox(f (box 3)))

The only definition reaching the variable x is the boxed machine
integer 3, and consequently it is easy to see that this program can
be rewritten to eliminate the boxing as follows:

let f = λx.x in f 3

This second version is much better in that it does less allocation,
and executes fewer instructions. In this optimized version of the
program however, an important property has changed that is not
reflected in this untyped synatax. Specifically, the GC status of
values reaching x has changed: whereas in the original program all
values reaching x are represented as heap allocated pointers, in the
second program all values reaching x are represented as machine
integers. From the standpoint of a garbage collector, a collection
occuring while x is live must treat x as a root in the first program,
and must ignore x in the second program.

The question of which variables should be treated as roots by
the garbage collector is a subtle but crucial one for the purposes of
optimization and compiler correctness. Consider a modification of
the previous example in which the function f is used polymorphi-
cally:

let f = λx.(boxx) in unbox(unbox((unbox(f f)) (box 3)))

In this variant, f is applied to itself, and the boxed result (itself)
is unboxed and applied to a boxed integer. The resulting doubly
boxed integer is then unboxed. Assuming that functions are repre-
sented as heap-allocated objects, each variable in this program has a
concrete and statically known status as either a GC root or GC non-
root, since all objects passed to f are heap references. However,
an attempt to unbox this program as with the previous example re-
sults in f being applied to both heap references (f) and non-heap
references (3).

let f = λx.x in(f f) 3

Consequently, a correct optimizer must decline to unbox this pro-
gram (at least in entirety) to avoid incorrect GC behavior.1

In our previous work [8] we developed a core language captur-
ing the essential issues of GC safety, along with an analysis and
optimization framework for reasoning about and correctly optimiz-
ing GC-safe programs in an untyped setting. However, the frame-
work is essentially limited to untyped programs and consequently
does not scale to typed core languages in which one must be able

1 A conservative GC, or systems that tag pointers to distinguish them from
non-pointers would not impose this restriction, but come with other draw-
backs. See Section 2.2 for more discussion of the GC model.

to check the well-typedness (and hence the GC safety) of programs
before and after optimization [6].

2.1 Type safety
How does the problem of unboxing change in a typed setting?
Consider again the first example from this section using a still
informal but now typed notation:

let
f : box(int)→ box(box(int)) = λx: box(int).(boxx)

in unbox(unbox(f(box 3)))

As before, it is apparent that the only definition reaching the
variable x is the boxed machine integer 3, and as before we can
consider rewriting this program to eliminate (interprocedurally)
the boxing. However, simply rewriting the terms of the program
is inadequate from the standpoint of type-preserving compilation,
since the result is not well-typed:

let
f : box(int)→ box(box(int)) = λx: box(int).x

in f 3

The types of both the actual argument and the return value of f have
changed, and are no longer consistent with the type annotation for f
and x. In order to correctly unbox this program then, it is necessary
to rewrite not just the terms, but also the types:

let f :int→ int = λx:int.x in f 3

The requirement to rewrite types is more imposing than might at
first be apparent. In the untyped setting, it was sufficient to have
information only about the direct definitions (boxes) and uses (un-
boxes) of objects. To rewrite types requires not just information
about uses and definitions but also about intermediate program
points (and other objects) through which the boxed objects flow.
Notice in particular that in rewriting the type of f , we were forced
to rewrite sub-components of the type that are not obviously syn-
tactically connected to any box introduction or elimination.

In addition to incurring these additional rewriting requirements,
the typed setting must still account for GC safety. Consider again
the polymorphic variant of the previous untyped example (naming
the first application of f for clarity).

let
f :∀α.α→ box(α) = Λα.λx:α.(boxx)
g: box(∀α.α→ box(α)) = f [∀α.α→ box(α)](f)

in unbox(unbox((unbox g)[box(int)](box 3)))

Here we have f applied to itself at a universal type to produce a
boxed version of itself (g), which is then unboxed and applied to a
boxed integer. Attempting to unbox this example (rewriting types
as necessary) immediately illuminates the problem.

let
f :∀α.α→ α = Λα.λx:α.x
g:∀α.α→ α = f [∀α.α→ α](f)

in g[int](3)

The function f is instantiated directly at a universal function type,
and via its alias (g) at a machine integer type. As with the untyped
example in the previous section, the compiler cannot assign a con-
crete GC status to the variable x. For correctness then, the compiler
must not (fully) unbox this example, and must leave at least the
boxing operation on the integer parameter to f .2

2 It is worth noting that an optimizing compiler might duplicate the body
of f to make it monomorphic, thereby enabling the unboxing. It is also
possible to use a runtime type passing interpretation to relax the constraints
on the garbage collector sufficiently to permit this example [1]. These

2 2012/3/11

Traceabilities t ::= b | r
Labels i ::= 0, 1, . . .

Type variables α, β
Labeled Types τ ::= σi

Types σ ::= α | B | ∀α.τ1 → τ2 | box(τ)
Term variables f, x, y, z

Constants c
Labeled Terms e ::= mi | vi

Terms m ::= x | fix f [α](x:τ1):τ2.e | e1[τ] e2 |
boxτ e | unbox e | ρ(e)

Values v ::= c | 〈ρ, fix f [α](x:τ1):τ2.e〉 | 〈vi:τ〉
Environments ρ ::= x1:τ1 = v1

j1 , . . . , xn:τn = vn
jn

States M ::= (ρ, e)

Figure 1. Syntax

In the rest of this paper we make these issues concrete and
formal, and we show how to deal with them by extending the
notion of flow analysis to incorporate types, thereby generating the
necessary flow information to correctly rewrite types and terms in
a consistent fashion. While we focus on a concrete optimization
(unboxing), we believe that these ideas are generally applicable
to representation optimizations based on flow analysis in typed
intermediate languages.

2.2 A core language for GC safety
In order to give a precise account of typed flow analysis and in-
terprocedural unboxing, we begin by defining a type-safe core lan-
guage incorporating the essential features of GC safety. The mo-
tivation for the (small) idiosyncracies of this language lies in the
requirements of the underlying model of garbage collection. We as-
sume that pointers cannot be intrinsically distinguished from non-
pointers, and hence the compiler is required to statically annotate
the program with garbage collection meta-data such that at any
garbage-collection point the garbage collector can reconstruct ex-
actly which live variables are roots. Typically, this takes the form of
annotations on variables and temporaries indicating which contain
heap-pointers (the roots) and which do not (the non-roots), along
with information at every allocation site indicating which fields of
the allocated object contain traceable data. This approach is com-
mon in modern systems, and it is this approach that we target in
this paper.

Figure 1 defines the syntax of our core language. The essence of
the language is a standard polymorphic lambda calculus extended
with a fixed-point operator, implemented via an explicit environ-
ment semantics. For the purposes of the semantics, we also include
a form of degenerate type information we call traceabilities. Trace-
abilities describe the GC status of variables: the traceability b (for
bits) indicates something that should be ignored by the garbage
collector, while the traceability r (for reference) indicates a GC-
managed pointer. The traceability b is inhabited by an unspecified
set of constants c while the traceability r is inhabited by functions
(anticipating their implementation by heap-allocated closures) and
by boxed objects. Anticipating the needs of the flow analysis, we
label each type, term, value, and variable binding site with an in-
teger label. We do not assume that labels or variables are unique
within a program.

Types, σ, consist of type variables, the base type of constants,
B, function types, ∀α.τ1 → τ2, and boxed types, box(τ). In order
to provide a concrete implementation strategy for the garbage col-

optimizations are orthogonal (but complementary) to the issues addressed
by this paper.

lector, we insist that every type correspond to a traceability so that
we can extract the necessary garbage collection meta-data. Types
are mapped to traceabilities using the function tr(τ), defined in
Figure 2. Polymorphic functions are restricted by well-formedness
rules to only be instantiated with types with the traceability r, and
consequently tr(α) = r. We define substitution of types in the
standard way and define τ [σi/α] = τ [σ/α].

Expressions e consist of labeled terms mi and labeled val-
ues vi. The terms m consist of variables, functions, applica-
tions, box introductions, box eliminations, and frames. Functions
fix f [α](x:τ1):τ2.e are polymorphic and recursive and variable-
binding sites are decorated with types. We represent heap allocation
in the language via the boxτ e term, which corresponds to allocat-
ing a heap cell containing the value for e. The type τ is used by
the dynamic semantics to provide the meta-data with which the
heap-cell will be tagged, allowing the garbage collector to trace the
cell. However, only the top-level traceability of the type (given by
the tr() function in Figure 2) is actually required by the dynamic
semantics, and so the language can be erased into an untyped lan-
guage in the obvious way. Objects can be projected out of an allo-
cated object by the unbox e operation. Frames ρ(e) are discussed
further below.

Values consist of either constants, closures, or heap-allocated
boxes. We distinguish between the introduction form (boxτ e)
and the value form (〈vi:τ〉) for allocated objects. The introduc-
tion form corresponds to the allocation instruction, whereas the
value form corresponds to the allocated heap value. This distinc-
tion is key for the formulation of GC safety and the dynamic
semantics. For this reason we also distinguish between func-
tions (fix f [α](x:τ1):τ2.e) and their heap-allocated closures
(〈ρ, fix f [α](x:τ1):τ2.e〉).

For notational convenience, we will sometimes use the notation
vb to indicate that a value v is a non-heap-allocated value (i.e. a
constant c), and vr to indicate that a value v is a heap-allocated
value. If t is a traceability meta-variable, then we use vt to indicate
that v is a value of the same traceability as t. In examples, we
use a derived let expression, taking it to be syntactic sugar for
application in the usual manner.

Environments ρ map variables to values. The term ρ(e) exe-
cutes e in the environment ρ rather than the outer environment –
all of the free variables of e are provided by ρ. The nested set
of these environments at any point can be thought of as the acti-
vation stack frames of the executing program. The traceability of
the typing annotations on variables in the environments play the
role of stack-frame GC meta-data, indicating which slots of the
frame are roots (traceability r). The environments buried in clo-
sures (〈ρ, fix f [α](x:τ1):τ2.e〉) similarly provide the traceabili-
ties of values reachable from the closure via the type annotations on
the variables in the environment, and hence provide the GC meta-
data for tracing through closures. While we do not make the process
of garbage collection explicit, it should be clear how to extract the
appropriate set of GC roots from the environment and any active
frames.

This core language contains the appropriate information to for-
malize a notion of GC safety consisting of two complementing
pieces. First we define a dynamic semantics in which reductions
that might lead to undefined garbage-collector behavior are explic-
itly undefined. Programs that take steps in this semantics do not in-
troduce ill-formed heap objects or activation frames. Secondly, we
define a notion of a traceable program: one in which all heap values
have valid GC meta-data. Reduction steps in the semantics can then
be shown to maintain the traceability property in addition to the
usual well-typedness property. By showing that typable programs
are both traceable programs and have well-defined semantics, we

3 2012/3/11

tr(σi) = tr(σ)
tr(α) = r
tr(B) = b
tr(∀α.τ1 → τ2) = r
tr(box(τ)) = r

x:τ = vj ∈ ρ

(ρ, xk) 7−→ (ρ, vj)

(ρ, (fix f [α](x:τ1):τ2.e)
j) 7−→

(ρ, 〈ρ, fix f [α](x:τ1):τ2.e〉j)

tr(τ) = t

(ρ, (boxτ vt
i)
j
) 7−→ (ρ, 〈vti:τ〉

j
)

(ρ, e1) 7−→ (ρ, e′1)

(ρ, (e1[τ] e2)i) 7−→ (ρ, (e′1[τ] e2)
i
)

(ρ, e2) 7−→ (ρ, e′2)

(ρ, (vi[τ] e2)
j
) 7−→ (ρ, (vi[τ] e′2)

j
)

vf = 〈ρ′, fix f [α](x:τ1):τ2.e〉 τ ′ = (∀α.τ1 → τ2)i

τ ′1 = τ1[τ/α] tr(τ ′1) = t

(ρ, (vf
i[τ] vt

j)
k
) 7−→

(ρ, (ρ′, f :τ ′ = vf
i, x:τ ′1 = vt

j)(e[τ/α])
k
)

(ρ, e) 7−→ (ρ, e′)

(ρ, (boxτ e)
i) 7−→ (ρ, (boxτ e

′)
i
)

(ρ, e) 7−→ (ρ, e′)

(ρ, (unbox e)i) 7−→ (ρ, (unbox e′)
i
)

(ρ, (unbox 〈vi:τ〉j)
k
) 7−→ (ρ, vi)

(ρ′, e) 7−→ (ρ′, e′)

(ρ, ρ′(e)
i
) 7−→ (ρ, ρ′(e′)

i
)

(ρ, ρ′(vi)
j
) 7−→ (ρ, vi)

Figure 2. Operational Semantics

thereby show that GC correctness for a compiler optimization can
be achieved simply by preserving well-typedness.

2.3 Operational semantics
We choose to use an explicit environment semantics rather than a
standard substitution semantics since this makes the GC meta-data
(as given by the types) for stack frames and closures explicit in
the semantics. Thus a machine state (ρ, e) supplies an environment
ρ for e that provides the values of the free variables of e during
execution. Environments contain typing annotations on each of the
variables mapped by the environment that provide the traceabilities
of the variables.

Reduction in this language is for the most part fairly standard.
We deviate somewhat in that we explicitly model the allocation of
heap objects as a reduction step—hence there is an explicit reduc-

Labeled Terms ` e tr
` m tr

` mi tr

`v v:t

` vi tr

Terms ` m tr

` x tr

` e tr

` fix f [α](x:τ1):τ2.e tr

` e1 tr ` e2 tr

` e1[τ] e2 tr

` e tr

` boxτ e tr

` e tr

` unbox e tr

` ρ tr ` e tr

` ρ(e) tr

Values `v v:t

`v c:b

`v v:tr(τ)

`v 〈vi:τ〉:r

` ρ tr ` e tr

`v 〈ρ, fix f [α](x:τ1):τ2.e〉:r

Environments ` ρ tr
`v v1:tr(τ1) · · · `v vn:tr(τn)

` x1:τ1 = v1
j1 , . . . , xn:τn = vn

jn tr

Machine States `M tr

` ρ tr ` e tr

` (ρ, e) tr

Figure 3. Traceability

tion mapping a function term fix f [α](x:τ1):τ2.e to an allocated
closure 〈ρ, fix f [α](x:τ1):τ2.e〉, and similarly for boxed objects
and values. More notably, beta-reduction is restricted to only permit
construction of a stack frame when the type for the parameter vari-
able has an appropriate traceability for the actual argument value.
This captures the requirement that stack frames have correct meta-
data for the garbage collector. In actual practice, incorrect meta-
data for stack frames leads to undefined behavior (since incorrect
meta-data may cause arbitrary memory corruption by the garbage
collector)—similarly here in the meta-theory we leave the behav-
ior of such programs undefined. In a similar fashion, we only de-
fine the reduction of the allocation operation to an allocated value
(boxτ vt 7−→ 〈vt:τ〉) when the operation meta-data is appropriate
for the value (i.e. tr(τ) = t).

It is important to note that this semantics does not imply an ex-
plicit check of the meta-data associated with these reductions. The
point is rather that the semantics only specifies how programs be-
have when these conditions are met—in all other cases the behavior
of the program is undefined (stuck).

4 2012/3/11

2.4 Traceability
The operational semantics ensures that no reduction step introduces
mis-tagged values. In order to make use of this, we define a judg-
ment for checking that a program does not have a mis-tagged value
in the first place. Implicitly this judgement defines what a well-
formed heap and activation stack looks like; however, since our
heap and stack are implicit in our machine states, it takes the form
of a judgement on terms, values, environments, and machine states.

The value judgement `v v:t asserts that a value v is well-
formed, and has traceability t. This corresponds to having the types
on the variables in the environment of each function value have
traceabilities that are consistent with the values to which they are
bound, and the type on each boxed value be consistent with the
traceability of the object nested in the box. An environment is
consistent, ` ρ tr, when the annotation on each variable agrees
with the traceability of the value it is bound to. The term judgement
` e tr and machine state judgement ` M tr simply check that all
values and environments (and hence stack frames) contained in the
term or machine state are well-formed.

The key result for traceability is that it is preserved under reduc-
tion. That is, if a traceable term takes a well-defined reduction step,
then the resulting term will be traceable.

Lemma 1 (Preservation of traceability)
If `M tr and M 7−→M ′ then `M ′ tr.

Proof: If ` (ρ, e) tr then ` ρ tr and ` e tr. If (ρ, e) 7−→ (ρ, e′)
then the result follows if we can show ` e′ tr. The proof of that is
by induction on the derivation of (ρ, e) 7−→ (ρ, e′). Consider the
cases for the last rule used to derive it (the cases are in the same
order as in the figure):

• In this case, e = xk for some x and k, and e′ = vj where
x:τ = vj ∈ ρ for some τ , v, and j. Since ` ρ tr then
`v v:tr(τ), so by the traceability rules ` vj tr as required.

• In this case, e = (fix f [α](x:τ1):τ2.e
′′)
j for some f , α,

x, τ1, τ2, e′′, and j, and e′ = 〈ρ, fix f [α](x:τ1):τ2.e
′′〉j .

The first hypothesis is that ` (fix f [α](x:τ1):τ2.e
′′)
j
tr.

There is only one rule to derive this judgement and that
rule requires that ` fix f [α](x:τ1):τ2.e

′′ tr, which in turn
can only be derived by one rule that requires that ` e′′ tr.
Then, and since ` ρ tr, by the rules for traceability, `v

〈ρ, fix f [α](x:τ1):τ2.e
′′〉:r, and by the traceability rules again

` 〈ρ, fix f [α](x:τ1):τ2.e
′′〉j tr, as we are required to prove.

• In this case, e = (boxτ vt
i)
j for some τ , vt, i, and j,

e′ = 〈vti:τ〉
j , and tr(τ) = t. The first hypothesis is that

` (boxτ vt
i)
j
tr. There is only one rule to derive this judge-

ment and that rule requires that ` boxτ vt
i tr, which in turn

can only be derived by one rule that requires that ` vt
i tr.

There is only one rule to derive the latter judgement and it re-
quires that `v vt:t

′ for some t′. By inspection of the rules for
value traceability, we see that t = t′. Since tr(τ) = t = t′, by
the rules for traceability, `v 〈vti:τ〉:r, and by the traceability
rules again ` 〈vti:τ〉

j
tr, as we are required to prove.

• In this case, e = (e1[τ] e2)i for some e1, τ , e2, and i, e′ =

(e′1[τ] e2)
i for some e′1, and (ρ, e1) 7−→ (ρ, e′1) is a subderiva-

tion. The first hypothesis is that ` (e1[τ] e2)i tr. There is
only one rule to derive this judgement and that rule requires
that ` e1[τ] e2 tr, which in turn can only be derived by one
rule that requires both ` e1 tr and ` e2 tr. Thus, by the
induction hypothesis, ` e′1 tr. Then, by the rules for trace-
ability, ` e′1[τ] e2 tr, and by the traceability rules again,
` (e′1[τ] e2)

i
tr, as we are required to prove.

• In this case, e = (vi[τ] e2)
j for some v, i, τ , e2, and j,

e′ = (vi[τ] e′2)
j for some e′2, and (ρ, e2) 7−→ (ρ, e′2) is a

subderivation. The first hypothesis is that ` (vi[τ] e2)
j
tr.

There is only one rule to derive this judgement and that rule
requires that ` vi[τ] e2 tr, which in turn can only be derived
by one rule that requires both ` vi tr and ` e2 tr. Thus,
by the induction hypothesis, ` e′2 tr. Then, by the rules for
traceability, ` vi[τ] e′2 tr, and by the traceability rules again,
` (vi[τ] e′2)

j
tr, as we are required to prove.

• In this case:

e = (vf
j [τ] vt

k)
l

vf = 〈ρ′, fix f [α](x:τ1):τ2.e
′′〉

e′ = ρ′′(e′′[τ/α])
l

ρ′′ = ρ′, f :τ ′ = vf
j , x:τ ′1 = vt

k

τ ′ = (∀α.τ1 → τ2)j

τ ′1 = τ1[τ/α]
tr(τ ′1) = t (6)

for some ρ′, f , α, x, τ1, τ2, e′′, j, τ , vt, k, and l. The first hy-
pothesis is that ` (vf

j [τ] vt
k)
l
tr. There is only one rule to de-

rive that judgement and that rule requires that ` vf j [τ] vt
k tr,

which in turn can only be derived by one rule that requires both
` vf j tr and ` vtk tr. Both of these latter derivations can only
be derived by one rule and those rules require that `v vf :r (1)
and `v vt:t (2) (a simple inspection reveals the traceabilities to
be r and t). Judgement 1 can only be derived by one rule and
that rule requires that ` ρ′ tr (3) and ` e′′ tr (4). By (3), (1),
tr(τ ′) = r, (2), and (6) we can derive ` ρ′′ tr (5). By (5) and
(4) we can derive ` ρ′′(e′′) tr, and then ` e′ tr, as required.

• In this case, e = (boxτ e
′′)
i for some τ , e′′, and i, e′ =

(boxτ e
′′′)

i, and (ρ, e′′) 7−→ (ρ, e′′′) is a subderivation. The
first hypothesis is that ` (boxτ e

′′)
i
tr. There is only one rule to

derive this judgement and that rule requires that ` boxτ e
′′ tr,

which in turn can only be derived by one rule that requires that
` e′′ tr. Thus, by the induction hypothesis, ` e′′′ tr. Then, by
the rules for traceability, ` boxτ e

′′′ tr, and by the traceability
rules again, ` (boxτ e

′′′)
i
tr, as we are required to prove.

• In this case, e = (unbox e′′)
i for some e′′ and i, e′ =

(unbox e′′′)
i, and (ρ, e′′) 7−→ (ρ, e′′′) is a subderivation.

The first hypothesis is that ` (unbox e′′)
i
tr. There is only

one rule to derive this judgement and that rule requires that
` unbox e′′ tr, which in turn can only be derived by one rule
that requires that ` e′′ tr. Thus, by the induction hypothesis,
` e′′′ tr. Then, by the rules for traceability, ` unbox e′′′ tr,
and by the traceability rules again, ` (unbox e′′′)

i
tr, as we

are required to prove.

• In this case, e = (unbox 〈vi:τ〉j)
k

for some τ , v, i, j, and k,

and e′ = vi. The first hypothesis is that ` (unbox 〈vi:τ〉j)
k
tr.

There is only one rule to derive this judgement and that rule
requires that ` unbox 〈vi:τ〉j tr, which in turn can only be
derived by one rule that requires that ` 〈vi:τ〉j tr. There is only
one rule to derive this latter judgement and that rule requires
that `v 〈vi:τ〉:t for some t, which in turn can only be derived
by one rule that requires that `v v:tr(τ). Then, by the rules for
traceability, ` vi tr, as we are required to prove.

• In this case, e = ρ′(e′′)
i for some ρ′, e′′ and i, e′ = ρ′(e′′′)

i

for some e′′′, and (ρ′, e′′) 7−→ (ρ′, e′′′). The hypothesis ` e tr
can only be derived in a certain way, unpacking that we see
that ` ρ′ tr and ` e′′ tr. Then by the induction hypothesis,

5 2012/3/11

∆ ::= α1, . . . , αn
Γ ::= x1:τ1, . . . , xn:τn

∆ ` τ wf

ftv(τ) ⊆ ∆

∆ ` τ wf

` τ1 = τ2

` αi = αj ` B
i = B

j

` τ11 = τ21 ` τ12 = τ22

` (∀α.τ11 → τ12)i = (∀α.τ21 → τ22)j

` τ1 = τ2

` box(τ1)i = box(τ2)j

` ρ : Γ

∅ ` τ1 wf · · · ∅ ` τn wf
∅; ∅ ` v1

i1 : τ ′1 · · · ∅; ∅ ` vnin : τ ′n
` τ1 = τ ′1 · · · ` τn = τ ′n

` (x1:τ1 = v1
i1 , . . . , xn:τn = vn

in) : (x1:τ1, . . . , xn:τn)

`M : τ

` ρ : Γ ∅; Γ ` e : τ

` (ρ, e) : τ

Figure 4. Type rules, other constructs

` e′′′ tr. So applyling the rules, we derive that ` ρ′(e′′′) tr
and then ` e′ tr, as required.

• In this case, e = ρ′(vi)
j for some ρ′, v, i, and j, and e′ = vi.

The hypothesis, ` e tr can only be derived in one way and
unpacking that we see that ` vi tr, which is what we are
required to prove.

There is no corresponding progress property for our notion of
traceability, since in the absence of further guarantees, programs
can go wrong. However, well-typed programs are both traceable
and do not go wrong as we will see in the next section, and so
preserving typability ensures GC correctness.

2.5 Typing
The typing rules appear in Figures 4 and 5. They are for the most
part standard except for two modifications. First, as types are la-
belled, we must sometimes ignore the labels in typing. Judgement
` τ1 = τ2 states that types τ1 and τ2 are syntactically equivalent
except that the labels on their sub-terms might differ. This is impor-
tant in (for example) the rule for application, where we require only
that the parameter type τ1 and the actual argument type τ2 satisfy
` τ1 = τ2 rather than τ1 = τ2; similarly in the rule for envi-
ronments. Second, the instantiation rule for polymorphic functions
enforces the property that the type argument have traceability r,
justifying a type variable always having traceability r and allowing
the compiler to compute GC meta-data for all types.

One particularly important aspect of our language is that we
assume a type-erasure semantics. For this interpretation to be cor-

∆; Γ ` e : τ

x:τ ∈ Γ

∆; Γ ` xi : τ

∆ ` (∀α.τ1 → τ2)i wf

∆, α; Γ, f :(∀α.τ1 → τ2)i, x:τ1 ` e : τ2

∆; Γ ` (fix f [α](x:τ1):τ2.e)
i : (∀α.τ1 → τ2)i

∆; Γ ` e1 : (∀α.τ1 → τ ′)
j

∆; Γ ` e2 : τ2
∆ ` τ wf tr(τ) = r ` τ1[τ/α] = τ2

∆; Γ ` (e1[τ] e2)i : τ ′[τ/α]

∆ ` τ wf ∆; Γ ` e : τ ′ ` τ = τ ′

∆; Γ ` (boxτ e)
i : box(τ)i

∆; Γ ` e : box(τ)j

∆; Γ ` (unbox e)i : τ

` ρ : Γ′ ∅; Γ′ ` e : τ

∆; Γ ` ρ(e)i : τ

∆; Γ ` ci : Bi

` ρ : Γ′ ∅ ` (∀α.τ1 → τ2)i wf

α; Γ′, f :(∀α.τ1 → τ2)i, x:τ1 ` e : τ2

∆; Γ ` 〈ρ, fix f [α](x:τ1):τ2.e〉i : (∀α.τ1 → τ2)i

∅ ` τ wf ∆; Γ ` vj : τ ′ ` τ = τ ′

∆; Γ ` 〈vj :τ〉i : box(τ)i

Figure 5. Type rules, expressions

rect, we must show that we can compute the correct GC meta-data
when erasing types. The operational semantics have the applica-
tion of a polymorphic function step to a frame where the annota-
tion on the function’s parameter is a substituted type. We need that
the GC meta-data for this substituted type equal the GC meta-data
for the unsubstituted parameter type of the function. The require-
ment tr(τ) = r in the typing rule for application is crucial to that
equality, and the following lemma proves it.

Lemma 2
If tr(τ) = r then tr(τ ′) = tr(τ ′[τ/α]).

Proof: The proof is by inspection of the definitions.
We can prove type safety for this language in the standard

way, via progress and preservations lemmas. First we need several
lemmas: that type equality is an equivalence relation, that equal
types have the same traceabilities, that a well-typed value has
the same traceability as its type, that type equality respects type
substitution, that value typing is independent of the typing context,
and a type substitution lemma.

6 2012/3/11

Lemma 3
Type equality is an equivalence relation, that is, ` τ = τ , ` τ1 =
τ2 implies ` τ2 = τ1, and ` τ1 = τ2 and ` τ2 = τ3 implies
` τ1 = τ3.

Proof: The proof is by a simple induction on the structure of τ for
reflexivity or the structure of the derivation(s) for symmetry and
transitivity and inspection of the rules.

Lemma 4
If ` τ1 = τ2 then tr(τ1) = tr(τ2).

Proof: The proof is by inspection of the last rule used.

Lemma 5
If ` τ1 = τ2 then ` τ1[τ/α] = τ2[τ/α].

Proof: The proof is by an easy induction on the derivation of
` τ1 = τ2.

Lemma 6
If ∆; Γ ` vti : τ then tr(τ) = t.

Proof: The proof is by inspection of the three rules for value
typing.

Lemma 7
If ∆; Γ ` vi : τ then ∆′; Γ′ ` vi : τ for any ∆′ and Γ′.

Proof: The proof is by any easy induction on the typing derivation
and inspection of the three rules for value typing.

Lemma 8
If ∆, α,∆′; Γ ` e : τ , ∆ ` τ ′ wf , and tr(τ ′) = r then
∆,∆′; Γ[τ ′/α] ` e[τ ′/α] : τ [τ ′/α].

Proof: The proof is a straight forward induction over the derivation
of ∆, α,∆′; Γ ` e : τ . It uses Lemma 2 in the case of the rule for
application.

With all these lemmas we can prove Type Preservation and
Progress.

Lemma 9 (Type Preservation)
If ` M1 : τ1 and M1 7−→ M2 then ` M2 : τ2 and ` τ1 = τ2 for
some τ2.

Proof: Assume that ` (ρ, e1) : τ1 and (ρ, e1) 7−→ (ρ, e2). We will
show by induction on the derivation of the latter that ` (ρ, e2) : τ2
and ` τ1 = τ2 for some τ2. By the typing rules, ` ρ : Γ and
∅; Γ ` e1 : τ1 for some Γ. By the typing rules, we just need to
show that ∅; Γ ` e2 : τ2 and ` τ1 = τ2 for some τ2. Consider the
cases, in the same rule as the figure, for the last rule used to derive
the reduction:

• (Variable) In this case, e1 = xi, e2 = vj , and x:τ ′ = vj ∈ ρ
for some x, i, v, j, and τ ′. The typing judgement can only be
derived with one rule and it requires that x:τ ∈ Γ. The typing
judgement (for ρ) can only be derived in one way and it requires
that τ = τ ′, ∅; ∅ ` vj : τ ′′, and ` τ = τ ′′. Thus the desired τ2
is τ ′′. We just need to show that ∅; Γ ` vj : τ2, which follows
by Lemma 7.

• (Fix expression) In this case, e1 = (fix f [α](x:τ ′1):τ ′2.e
′)
i

and e2 = 〈ρ, fix f [α](x:τ ′1):τ ′2.e
′〉i. The typing judgement

can only be derived with one rule and it requires that ∅ ` τ1 wf ,
α; Γ, f :τ1, x:τ ′1 ` e′ : τ ′2 and τ1 = (∀α.τ ′1 → τ ′2)

i. Thus by
the typing rules, ∅; Γ ` e2 : τ1. By Lemma 3, ` τ1 = τ1, so
the result follows by setting τ2 = τ1.

• (Box expression) In this case, e1 = (boxτ v
i)
j and e2 =

〈vi:τ〉j for some τ , v, i, and j. The typing judgement can
only be derived with one rule and it requires that ∅ ` τ wf ,
∅; Γ ` vi : τ ′, ` τ = τ ′, and τ1 = box(τ)j . By the typing
rules, ∅; Γ ` e2 : τ1. By Lemma 3, ` τ1 = τ1, so the result
follows by setting τ2 = τ1.

• (Application function) In this case, e1 = (e3[τ] e4)i, e2 =
(e5[τ] e4)i, and (ρ, e3) 7−→ (ρ, e5) for some e3, τ , e4, and e5.
The typing judgement can only be derived with one rule and it
requires that ∅; Γ ` e3 : (∀α.τ3 → τ ′)

j , ∅; Γ ` e4 : τ4, ∅ `
τ wf , tr(τ) = r, ` τ3[τ/α] = τ4, and τ = τ ′[τ/α] for some
τ3, τ ′, j, and τ4. By the induction hypothesis, ∅; Γ ` e5 : τ5
and ` (∀α.τ3 → τ ′)

j
= τ5 for some τ5. There is only one rule

to derive the latter and it requires that τ5 = (∀α.τ51 → τ52)k,
` τ3 = τ51, and ` τ ′ = τ52 for some τ51, τ52, and k. By
Lemma 5, ` τ3[τ/α] = τ51[τ/α] and ` τ ′[τ/α] = τ52[τ/α].
By Lemma 3, ` τ51[τ/α] = τ4. So by the typing rules, ∅; Γ `
e2 : τ52[τ/α]. The result follows by setting τ2 = τ52[τ/α].

• (Application argument) In this case, e1 = (e3[τ] e4)i, e2 =
(e3[τ] e5)i, and (ρ, e3) 7−→ (ρ, e5) for some e3, e4, and e5.
The typing judgement can only be derived with one rule and it
requires that ∅; Γ ` e3 : (∀α.τ3 → τ ′)

j , ∅; Γ ` e4 : τ4, ∅ `
τ wf , tr(τ) = r, ` τ3[τ/α] = τ4, and τ1 = τ ′[τ/α] for some
τ3, τ ′, j, and τ4. By the induction hypothesis, ∅; Γ ` e5 : τ5
and ` τ4 = τ5. By Lemma 3, ` τ3[τ/α] = τ5. So by the typing
rules, ∅; Γ ` e2 : τ1. By Lemma 3, ` τ1 = τ1, so the result
follows by setting τ2 = τ1.

• (Application beta) In this case:

e1 = (v1
i[τ] v2

j)
k

v1 = 〈ρ′, fix f [α](x:τ ′1):τ ′2.e
′〉

e2 = ρ′′(e′[τ/α])
k

ρ′′ = ρ′, f :τ ′ = v1
i, x:τ ′1[τ/α] = v2

j

τ ′ = (∀α.τ ′1 → τ ′2)
i

for some ρ′, f , α, x, τ ′1, τ ′2, e′, i, v2, j, and k. Unpacking the
typing judgement, which can only be derived in one way, ∅; Γ `
v1
i : τ ′ (1), ` ρ′ : Γ′ (2), ∅ ` τ ′ wf (12), α; Γ′, f :τ ′, x:τ ′1 `

e′ : τ ′2 (3), τ1 = τ ′2[τ/α] (4), ∅; Γ ` v2
j : τ ′′1 (5), `

τ ′1[τ/α] = τ ′′1 (6), ∅ ` τ wf , and tr(τ) = r for some
Γ′ and τ ′′2 . By (1) and Lemma 7, ∅; ∅ ` v1

i : τ ′ (7). By
Lemma 3, ` τ ′ = τ ′ (8). By (5) and Lemma 7, ∅; ∅ `
v2
j : τ ′′2 (9). By (2), (7), (8), (9), and (6), the typing rules

give ` ρ′′ : Γ′, f :τ ′, x:τ ′1[τ/α] (10). By (3) and Lemma 8,
∅; (Γ′, f :τ ′, x:τ ′1)[τ/α] ` e′[τ/α] : τ ′2[τ/α] (11). By (2)
and (12), by inspection of the typing rules, Γ′[τ/α] = Γ′

and τ ′[τ/α] = τ ′. Thus, ∅; Γ′, f :τ ′, x:τ ′1[τ/α] ` e′[τ/α] :
τ ′2[τ/α] (13). By (10) and (13), the typing rules give ∅; Γ `
ρ′′(e′[τ/α])

k
: τ ′2[τ/α] (14). By (4), the result follows by

setting τ2 = τ ′2[τ/α].

• (Box argument) In this case, e1 = (boxτ e)
i, e2 = (boxτ e

′)
i,

and (ρ, e) 7−→ (ρ, e′) for some τ , e, i, and e′. The typing
judgement can only be derived with one rule and it requires that
∅ ` τ wf , ∅; Γ ` e : τ ′, ` τ = τ ′ and τ1 = box(τ)i for some
τ ′. By the induction hypothesis, ∅; Γ ` e′ : τ ′′ and ` τ ′ = τ ′′

for some τ ′′. By Lemma 3, ` τ = τ ′′. By the typing rules,
∅; Γ ` e2 : box(τ)i. By Lemma 3, ` τ1 = τ1, so the result
follows by setting τ2 = τ1.

• (Unbox argument) In this case, e1 = (unbox e)i, e2 =

(unbox e′)
i, and (ρ, e) 7−→ (ρ, e′) for some e, i, and e′. The

typing judgement can only be derived with one rule and it re-

7 2012/3/11

quires that ∅; Γ ` e : box(τ1)j for some j. By the induction
hypothesis, ∅; Γ ` e′ : τ ′ and ` box(τ1)j = τ ′ for some τ ′.
The latter can only be derived with one rule and it requires that
τ ′ = box(τ ′′)

k and ` τ1 = τ ′′ for some τ ′′ and k. By the
typing rules, ∅; Γ ` e2 : τ ′′, so the result follows by setting
τ2 = τ ′′.

• (Unbox beta) In this case, e1 = (unbox 〈vi:τ〉j)
k

and e2 = vi

for some τ , v, i, j, and k. The typing judgement can only be
derived with one rule and it requires that ∅; Γ ` 〈vi:τ〉j :
box(τ1)l for some l. The latter can only be derived with one
rule and it requires τ = τ1, ∅; Γ ` vi : τ ′, and ` τ = τ ′. So
the result follows by setting τ2 = τ ′.

• (Frame step) In this case, e1 = ρ′(e)
i, e2 = ρ′(e′)

i, and
(ρ′, e) 7−→ (ρ′, e′) for some ρ′, e, i, and e′. The typing judge-
ment can only be derived with one rule and it requires that
ρ′ ` Γ′ : and ∅; Γ′ ` e : τ1 for some Γ′. By the induction
hypothesis, ∅; Γ′ ` e′ : τ ′ and ` τ1 = τ ′ for some τ ′. By
the typing rules, ∅; Γ ` e2 : τ ′, so the result follows by setting
τ2 = τ ′.

• (Frame return) In this case, e1 = ρ′(vi)
j and e2 = vi for some

ρ′, v, i, and j. The typing judgement can only be derived with
one rule and it requires that ρ′ ` Γ′ : and ∅; Γ′ ` vi : τ1. By
Lemma 7, ∅; Γ ` vi : τ1. By Lemma 3, ` τ1 = τ1, so the result
follows by setting τ2 = τ1.

Lemma 10 (Progress)
If ` M : τ then either M has the form (ρ, vi) or M 7−→ M ′ for
some M ′.

Proof: The result follows from: If ` ρ : Γ and ∅; Γ ` e : τ then
either e has the form vi or (ρ, e) 7−→ (ρ, e′) for some e′. We will
prove this by induction on the typing derivation for e. Consider
the last rule, in the same order as the figure, used to derive the
judgement:

• (Variable) In this case e = xi and x:τ ∈ Γ. There is only one
rule to derive ` ρ : Γ and it requires that x:τ = vj ∈ ρ and
other conditions for some v and j. Then by the variable rule,
(ρ, e) 7−→ vj , as required.

• (Fix expression) In this case e = (fix f [α](x:τ1):τ2.e
′)
i.

Clearly by the fix expression rule:

(ρ, e) 7−→ (ρ, 〈ρ, fix f [α](x:τ1):τ2.e
′〉i)

• (Application) In this case, e = (e1[τ ′] e2)
i. The typing rule

requires that ∅; Γ ` e1 : (∀α.τ1 → τ3)j (1), ∅; Γ ` e2 : τ2
(2), and ` τ1[τ ′/α] = τ2 (3) for some τ1, j, and τ2. By the
induction hypothesis, either e1 is a value or reduces, and e2 is a
value or reduces. There are three subcases:

Case 1, e1 reduces: In this case there is e′1 such that
(ρ, e1) 7−→ (ρ, e′1). Then by the application function rule,
(ρ, e) 7−→ (ρ, (e′1[τ ′] e2)

i
), as required.

Case 2, e1 is a value and e2 reduces: In this case there is
e′2 such that (ρ, e2) 7−→ (ρ, e′2). Then by the application
function rule, (ρ, e) 7−→ (ρ, (e1[τ ′] e′2)

i
), as required.

Case 3, e1 = v1
k and e2 = v2

l for some v1, k, v2, and l:
There is only one typing rule to derive (1) and it requires that
v1 have the form 〈ρ′, fix f [α](x:τ1):τ3.e

′〉 for some ρ′, f ,
x, and e′. Let t be the traceability of v2. By Lemma 6 and
(2), tr(τ2) = t. By Lemma 4 and (3), tr(τ1[τ ′/α]) = t.

Then by the application beta rule:

(ρ, e) 7−→
(ρ, (ρ′, f :τ ′ = v1

k, x:τ1[τ ′/α] = v2
l)(e′[τ ′/α])

i
)

where τ ′ = (∀α.τ1 → τ3)k, as required.

• (Box expression) In this case, e = (boxτ ′ e
′)
i for some τ ′,

e′, and i. The typing rule requires that τ = box(τ ′)
i, ∅; Γ `

e′ : τ ′′ (1), and ` τ ′ = τ ′′ (2) for some τ ′′. By the induction
hypothesis, either e′ is a value or reduces:

If e′ = vt
j then by Lemma 6 and (1), tr(τ ′′) = t. By (2)

and Lemma 4, tr(τ ′) = t. So by the box reduction rule,
(ρ, e) 7−→ (ρ, 〈vt′ j :τ ′〉

i
), as required.

If (ρ, e′) 7−→ (ρ, e′′) then (ρ, e) 7−→ (ρ, (boxτ ′ e
′′)
i
), as

required.

• (Unbox) In this case, e = (unbox e′)
i for some e′ and i. The

typing rule requires that ∅; Γ ` e′ : box(τ)j (1) for some j. By
the induction hypothesis, e′ is a value or reduces:

If e′ = vk then (1) can be derived by only one rule and
it requires that v = 〈v′l:τ ′〉 for some v′, l, and τ ′. By the
unbox beta rule, (ρ, e) 7−→ (ρ, v′

l
), as required.

If (ρ, e′) 7−→ (ρ, e′′) then by the unbox argument rule,
(ρ, e) 7−→ (ρ, (unbox e′′)

i
), as required.

• (Frame) In this case, e = ρ′(e′)
i for some ρ′, e′, and i. The

typing rule requires that ` ρ′ : Γ′ and ∅; Γ′ ` e′ : τ for some
Γ′. By the induction hypothesis, e′ is a value or reduces:

If e′ = vj then by the frame return rule, (ρ, e) 7−→ (ρ, vj),
as required.

If (ρ, e′) 7−→ (ρ, e′′) then by the frame step rule, (ρ, e) 7−→
(ρ, ρ′(e′′)

i
), as required.

• (Constant) In this case e = ci for some c and i and is clearly a
value.

• (Fix value) In this case e = 〈ρ′, fix f [α](x:τ1):τ2.e
′〉i for

some ρ′, f , x, τ1, τ2, e′ and i and is clearly a value.

• (Box value) In this case e = 〈vi:τ ′〉j for some τ ′, v, i, and j
and is clearly a value.

Finally, we can also prove that typability implies traceability
and thus typable programs are GC safe and remain so throughout
execution.

Lemma 11
• If `M : τ then `M tr.
• If ` ρ : Γ then ` ρ tr.
• If ∆; Γ ` e : τ then ` e tr.
• If ∆; Γ ` vi : τ then `v v:tr(τ).

Proof: The results are proven simultaneously by induction on the
structure of the typing derivation. The cases for the last rule used,
in the same order as the figure, are:

• (Variable) In this case clearly ` e tr.

• (Fix expression) In this case e = (fix f [α](x:τ1):τ2.e
′)
i

for some x, α, τ1, τ2, e′, and i. Then by the typing rule,
∆, α; Γ, f :τ, x:τ1 ` e′ : τ2 is a subderivation. By the induction
hypothesis, ` e′ tr. So by the rules for traceability, ` e tr, as
required.

• (Application) In this case e = (e1[τ ′] e2)
i for some e1, τ ′, e2,

and i. By the typing rule, ∆; Γ ` e1 : τ1 and ∆; Γ ` e2 : τ2

8 2012/3/11

for some τ1 and τ2. By the induction hypothesis, ` e1 tr and
` e2 tr. By the rules for traceability ` e tr, as required.

• (Box expression) In this case e = (boxτ ′ e
′)
i for some τ ′, e′,

and i. By the typing rule, ∆; Γ ` e′ : τ ′′ for some τ ′′. By
the induction hypothesis, ` e′ tr. By the rules for traceability,
` e′ tr, as required.

• (Unbox) In this case e = (unbox e′)
i for some e′ and i. By

the typing rule, ∆; Γ ` e′ : τ ′ for some τ ′. By the induction
hypothesis, ` e′ tr. By the rules for traceability, ` e tr, as
required.

• (Frame) In this case, e = ρ(e′)
i for some ρ, e′, and i. By the

typing rule, ` ρ : Γ′ and ∅; Γ′ ` e′ : τ for some Γ′. By the
induction hypothesis, ` ρ tr and ` e′ tr. By the rules for
traceability, ` e tr, as required.

• (Constant) In this case e = ci. By the typing rule, τ = B
i and so

clearly tr(τ) = b. By the rules for traceability, `v c:b, proving
the fourth result. By the rules for traceability again, ` e tr,
proving the third result.

• (Fix value) In this case e = 〈ρ, fix f [α](x:τ1):τ2.e
′〉i for

some ρ, f , α, x, τ1, τ2, e′, and i. By the typing rule, ` ρ : Γ′

and α; Γ′, f :τ, x:τ1 ` e′ : τ2 for some Γ′. Also by the typing
rules, τ is a function type, so tr(τ) = r. By the induction
hypothesis, ` ρ tr and ` e′ tr. By the rules for traceability,
`v 〈ρ, fix f [α](x:τ1):τ2.e

′〉:r, proving the fourth result. By
the rules for traceability again, ` e tr, proving the third result.

• (Box value) In this case e = 〈vi:τ ′〉j . By the typing rule,
∆; Γ ` vi : τ ′′ and ` τ ′ = τ ′′ for some τ ′′. Also by the
typing rule, τ is a box type, so tr(τ) = r. By the induction
hypothesis, `v v:tr(τ ′′). By Lemma 4, `v v:tr(τ ′). By the
rules for traceability, `v 〈vi:τ ′〉:r, proving the third result. By
the rules for traceability again, ` e tr, as required.

• (Environment) In this case ρ = x1:τ1 = v1
i1 , . . . , xn:τn =

vn
in . By the typing rule, ∅; ∅ ` vj

ij : τ ′j and ` τj = τ ′j
for 1 ≤ j ≤ n and some τ ′js. By the induction hypothesis,
`v vj :tr(τ ′j) for 1 ≤ j ≤ n. By Lemma 4, tr(τj) = tr(τ ′j)
for 1 ≤ j ≤ n. Thus `v vj :tr(τj) for 1 ≤ j ≤ n. By the
traceability rules, ` ρ tr, as required.

• (Machine state) In this case M = (ρ, e). By the typing rule,
` ρ : Γ and ∅; Γ ` e : τ for some Γ. By the induction
hypothesis, ` ρ tr and ` e tr. By the rules for traceability,
`M tr, as required.

3. Flow analysis
There is a vast body of literature on interprocedural analysis and
optimization, and it is generally fairly straightforward to use these
approaches to obtain information about what definitions flow to
what use sites. Without committing to a particular approach or
implementation, we refer to this body of work broadly as flow
analysis. Our contribution in this paper lies in showing how to
extend a specification of a general flow analysis to the type level,
and in showing that any flow analysis so extended can be used to
implement an unboxing optimization that preserves type safety and
program semantics.

In order to do this, we must provide some framework for de-
scribing what information a flow analysis must provide. The core
language defined in Section 2 provides labels serving as proxies
for the terms, types, and variables on which they occur – the ques-
tion above can therefore be thought of in terms of finding the set of
labels k that reach the position labeled with j.

Following previous work we begin by defining an abstract no-
tion of analysis. We say that an analysis is a pair (C, %). Binding
environments % serve to map variables to the label of their binding
sites. The mappings are, as usual, global for the program. Conse-
quently, a given environment may not apply to alpha-variants of a
term. We do not require that labels be unique within a program—
as usual however, analyses will be more precise if this is the case.
Variables are also not required to be unique (since reduction may
duplicate terms and hence binding sites). However, duplicate vari-
able bindings in a program must be labeled consistently according
to % or else no analysis of the program can be acceptable according
to our definition. This can always be avoided by alpha-varying or
relabeling appropriately.

A cache C is a mapping from labels to sets of shapes. Shapes
are given by the grammar:

Shapes: s ::= ci | (∀i.j → k)lv | (boxt i)
j
v |

B
i | (∀i.j → k)lt | (box i)

j
t

There are two classes of shapes—term shapes and type shapes.
The idea behind term shapes is that each shape provides a proxy
for a set of terms that might flow to a given location, describing
both the shape of the values that might flow there and the labels of
the sub-components of those values. For example, for an analysis
(C, %), ci ∈ C(k) indicates that (according to the analysis) the
constant c, labeled with i, might flow to a location labeled with
k. Similarly, if (∀i′.i→ j)

k
v ∈ C(l), then the analysis specifies

that among the values flowing to locations labeled with l might
be functions labeled with k, whose type parameter is labeled with
i′, parameter type is labeled with i, and whose bodies are labeled
with j. If (boxt k)iv ∈ C(l) then among the values that might flow
to l (according to the analysis) are boxed values labeled with i,
with meta-data t and whose bodies are labeled by some j such that
C(j) ⊆ C(k).

Where term shapes provide a proxy for the set of values that
might flow to a given location, type shapes provide a proxy for
the types of the locations that values might flow through to get to
a given location. For example, for an analysis (C, %), Bi ∈ C(k)
indicates that (according to the analysis) objects that reach location
k might flow through a variable or term of type B, labeled with i.
The function type and box type shapes similarly correspond to the
flow of values through variables of function or box types.

It is important to note that the shapes in the cache may not
correspond exactly to the terms in the program, since reduction may
change program terms (e.g. by instantiating variables with values).
However, reduction does not change the outer shape and labeling
of values—it is this reduction invariant information that is captured
by shapes.

Clearly, not every choice of analysis pairs is meaningful for pro-
gram optimization. While in general it is reasonable (indeed, un-
avoidable) for an analysis to overestimate the set of terms associ-
ated with a label, it is unacceptable for an analysis to underestimate
the set of terms that flow to a label—most optimizations will pro-
duce incorrect results, since they are designed around the idea that
the analysis is telling them everything that could possibly flow to
them. In order to capture the notion of when an analysis pair gives
a suitable approximation of the flow of values in a program we
follow the general spirit of Nielson et al. [7], and define a notion
of an acceptable analysis. That is, we give a declarative specifi-
cation that gives sufficient conditions for specifying when a given
analysis does not underestimate the set of terms flowing to a label,
without committing to a particular analysis. We arrange the subse-
quent meta-theory such that our results apply to any analysis that is
acceptable. In this way, we decouple our optimization from the par-
ticulars of how the analysis is computed and the relative precision
of the result.

9 2012/3/11

Our acceptable-analysis relation is given in Figures 6 and 7—
the judgement C; % ` (ρ, e) determines that an analysis pair (C, %)
is acceptable for a machine state (ρ, e), and similarly for the envi-
ronment and expression forms of the judgement. We use the nota-
tion lbl(e) to denote the outermost label of e: that is, i where e is of
the form mi or vi and similarly for types. The acceptability judge-
ment generally indicates for each syntactic form what the flow of
values is. For example, in the application rule, the judgment insists
that for every function value that flows to the applicand position,
the set of shapes associated with the parameter of that function is
a super-set of the set of shapes associated with the argument of the
application; and that the set of shapes associated with the result of
the function is a sub-set of the set of shapes associated with the
application itself.

The judgement C; % ` τ determines that an analysis pair (C, %)
is acceptable for a labeled type τ . In particular, if a function flows
to a function type ∀α.τ1 → τ2 then the set of values that flow to
the function’s parameter can flow to the argument type τ1, and the
set of values that can flow from the result of the function can flow
to the result type τ2. Similarly for a box type, for every box value
that might flow to the box type the contents of the box value flows
to the contents of the box type.

Given this definition, we can show a correctness result for anal-
yses satisfying this specification by showing that the acceptability
relation is preserved under reduction.

Lemma 12 (Cache refinement under reduction)
If C; % ` ρ, C; % ` e1, and (ρ, e1) 7−→ (ρ, e2) then C(lbl(e1)) ⊇
C(lbl(e2)).

Proof: The proof is by induction on the derivation of (ρ, e1) 7−→
(ρ, e2). Consider the cases for the last rule used to it (the cases are
in the same order as in the figure):

• (Variable instantiation.) In this case, e1 = xk, e2 = vj , and
x:τ = vj ∈ ρ. The assumption C; % ` ρ requires that C(j) ⊆
C(lbl(τ)) and %(x) = lbl(τ). The assumption C; % ` e1

requires that C(%(x)) ⊆ C(k). Thus C(j) ⊆ C(k). Clearly,
lbl(e1) = k and lbl(e2) = j and the result follows.

• (Fix introduction.) In this case, clearly lbl(e1) = lbl(e2) and
the result immediately follows.

• (Box introduction.) In this case, clearly lbl(e1) = lbl(e2) and
the result immediately follows.

• (Application left.) In this case, clearly lbl(e1) = lbl(e2) and
the result immediately follows.

• (Application right.) In this case, clearly lbl(e1) = lbl(e2) and
the result immediately follows.

• (Application beta.) In this case, clearly lbl(e1) = lbl(e2) and
the result immediately follows.

• (Under box.) In this case, clearly lbl(e1) = lbl(e2) and the
result immediately follows.

• (Under unbox.) In this case, clearly lbl(e1) = lbl(e2) and the
result immediately follows.

• (Unbox beta.) In this case, e1 = (unbox 〈vi:τ〉j)
k

and e2 = vi.
The first hypothesis can be derived only by one rule and it re-
quires that C; % ` 〈vi:τ〉j (1), and box (C; j, k) (2). Judgement
1 can only be derived by one rule and it requires that C; % ` vi
(4), (boxtr(τ) i

′′)
j

v
∈ C(j) (5) for some i′′, and C(i) ⊆ C(i′′)

(6). Instantiating Fact 2 with Fact 5 we get that C(i′′) ⊆ C(k)
(7). Combining Facts 6 and 7, C(i) ⊆ C(k), as we are required
to prove.

fun(C; i, j, k, l) box (C; i, j)

fun(C; i, j, k, l) =

∧ ∀(∀j′.k′ → l′)
i′

v ∈ C(i) :
C(j) = C(j′) ∧ C(k) ⊆ C(k′) ∧ C(l′) ⊆ C(l)

∧ ∀(∀j′.k′ → l′)
i′

t ∈ C(i) :
C(j) = C(j′) ∧ C(k) ⊆ C(k′) ∧ C(l′) ⊆ C(l)

box (C; i, j) =

∧ ∀(boxt j′)i
′

v ∈ C(i) : C(j′) ⊆ C(j)

∧ ∀(box j′)i
′

t ∈ C(i) : C(j′) ⊆ C(j)

C; % ` e

C(%(x)) ⊆ C(i)

C; % ` xi

%(f) = i %(x) = lbl(τ1) C; % ` (∀α.τ1 → τ2)i

C; % ` e (∀%(α).lbl(τ1)→ lbl(e))iv ∈ C(i)

C; % ` (fix f [α](x:τ1):τ2.e)
i

C; % ` e1 C; % ` τ C; % ` e2

fun(C; lbl(e1), lbl(τ), lbl(e2), i)

C; % ` (e1[τ] e2)i

C; % ` box(τ)i C; % ` e
(boxtr(τ) j)

i

v
∈ C(i) C(lbl(e)) ⊆ C(j)

C; % ` (boxτ e)
i

C; % ` e box (C; lbl(e), i)

C; % ` (unbox e)i

C; % ` ρ C; % ` e C(lbl(e)) ⊆ C(i)

C; % ` ρ(e)i

C; % ` B
i ci ∈ C(i)

C; % ` ci

%(f) = i %(x) = lbl(τ1) C; % ` (∀α.τ1 → τ2)i

C; % ` ρ C; % ` e
(∀%(α).lbl(τ1)→ lbl(e))iv ∈ C(i)

C; % ` 〈ρ, fix f [α](x:τ1):τ2.e〉i

C; % ` box(τ)i C; % ` vj
(boxtr(τ) k)i

v
∈ C(i) C(j) ⊆ C(k)

C; % ` 〈vj :τ〉i

Figure 6. Acceptable Analysis, Expressions

• (Under frame.) In this case, clearly lbl(e1) = lbl(e2) and the
result immediately follows.

• (Frame return.) In this case, e1 = ρ′(vi)
j and e2 = vi.

The assumption C; % ` e1 requires that C(i) ⊆ C(j). Since
lbl(e1) = j and lbl(e2) = i, the result is immediate.

10 2012/3/11

C; % ` τ

C(%(α)) = C(i)

C; % ` αi
B
j ∈ C(i)

C; % ` B
i

C; % ` τ1 C; % ` τ2
(∀%(α).lbl(τ1)→ lbl(τ2))jt ∈ C(i)
fun(C; i, %(α), lbl(τ1), lbl(τ2))

C; % ` (∀α.τ1 → τ2)i

C; % ` τ (box lbl(τ))jt ∈ C(i) box (C; i, lbl(τ))

C; % ` box(τ)i

C; % ` Γ

∀1 ≤ j ≤ n : %(xj) = lbl(τj) ∧ C; % ` τj

C; % ` x1:τ1, . . . , xn:τn

C; % ` ρ

C; % ` x1:τ1, . . . , xn:τn
∀1 ≤ j ≤ n : C(ij) ⊆ C(lbl(τj)) ∧ C; % ` vkik

C; % ` x1:τ1 = v1
i1 , . . . , xn:τn = vn

in

C; % `M

C; % ` ρ C; % ` e

C; % ` (ρ, e)

Figure 7. Acceptable Analysis, Other Constructs

Next we show a type substitution lemma for acceptability.

Lemma 13
If C; % ` τ and C(lbl(τ)) = C(%(α)) then:

• If C; % ` τ ′ then C; % ` τ ′[τ/α].
• If C; % ` Γ then C; % ` Γ[τ/α].
• If C; % ` e then C; % ` e[τ/α].
• If C; % ` ρ then C; % ` ρ[τ/α].

Proof: The proof is by induction on the derviation of the C; % ` τ ′
and C; % ` e. Consider the cases for the rules used to derive it (in
the same order as in the figures):

• The cases for expressions are straight forward.
• (Type variable) In this case τ ′ = βi. If β 6= α then τ ′[τ/α] =
τ ′ and the result is immediate. Otherwise, by the rules for
acceptability, C(%(α)) = C(i). If τ = σj then τ ′[τ/α] = σi.
Consider the cases for σ:

Subcase 1, σ = α′: Then by the rules for acceptability,
C(%(α′)) = C(j). Since C(j) = C(%(α)) = C(i),
C(%(α′)) = C(i), and thus C; % ` α′i, as required.

Subcase 2, σ = ∀α′.τ1 → τ2: Since C; % ` τ , the rules
require:

C; % ` τ1 (1)
C; % ` τ2 (2)

(∀%(α′).lbl(τ1)→ lbl(τ2))
k
t ∈ C(j) (3)

fun(C; j, %(α′), lbl(τ1), lbl(τ2)) (4)

By (3) and C(j) = C(i):

(∀%(α′).lbl(τ1)→ lbl(τ2))
k

t ∈ C(i) (5)

By (4) and C(j) = C(i):

fun(C; i, %(α′), lbl(τ1), lbl(τ2)) (6)

By (1), (2), (5), and (6), by the rules for acceptability,
C; % ` σi.
Subcase 3, σ = box(τ ′′): Since C; % ` τ , the rules require:

C; % ` τ ′′ (1)

(box lbl(τ ′′))
k
t ∈ C(j) (2)

box (C; j, lbl(τ ′′)) (3)

By (2) and C(j) = C(i), (box lbl(τ ′′))
k
t ∈ C(i) (4). By (3)

and C(j) = C(i), box (C; i, lbl(τ ′′)) (5). By (1), (4), and
(5), by the rules for acceptability, C; % ` σi, as required.

• (Base type) In this case τ ′[τ/α] = τ and the result is immedi-
ate.

• (Function type) In this case τ ′ = (∀α′.τ1 → τ2)
i. The rules for

acceptability require:

C; % ` τ1 (1)
C; % ` τ2 (2)

(∀%(α′).lbl(τ1)→ lbl(τ2))
k
t ∈ C(i) (3)

fun(C; i, %(α′), lbl(τ1), lbl(τ2)) (4)

By (1), (2), and the induction hypothesis:

C; % ` τ1[τ/α] (5)
C; % ` τ2[τ/α] (6)

Since lbl(τ1[τ/α]) = lbl(τ1) and lbl(τ1[τ/α]) = lbl(τ1):

(∀%(α′).lbl(τ1[τ/α])→ lbl(τ2[τ/α]))
k
t ∈ C(i) (7)

fun(C; i, %(α′), lbl(τ1[τ/α]), lbl(τ2[τ/α])) (8)

Since lbl(τ ′[τ/α]) = i, by (5), (6), (7), and (8), C; % `
τ ′[τ/α], as required.

• (Box type) In this case, τ ′ = box(τ ′′)
i. The rules for accept-

ability require:

C; % ` τ ′′ (1)

(box lbl(τ ′′))
k
t ∈ C(i) (2)

box (C; i, lbl(τ ′′)) (3)

By (1) and the induction hypothesis:

C; % ` τ ′′[τ/α] (4)

Since lbl(τ ′′[τ/α]) = lbl(τ ′′):

(box lbl(τ ′′[τ/α]))
k
t ∈ C(i) (5)

box (C; i, lbl(τ ′′[τ/α])) (6)

Since lbl(τ ′[τ/α]) = i, by (4), (5), and (6), C; % ` τ ′[τ/α], as
required.

• The cases for type and value environments are straight forward.

With these lemmas we can prove that reduction preserves ac-
ceptability of the flow analysis.

Lemma 14 (Preservation of acceptability under reduction)
If C; % `M and M 7−→M ′ then C; % `M ′.

Proof: If C; % ` (ρ, e) then C; % ` ρ and C; % ` e. If (ρ, e) 7−→
(ρ, e′) then the result follows if we show that C; % ` e′. The proof
of the latter is by induction on the derivation of (ρ, e) 7−→ (ρ, e′).

11 2012/3/11

Consider the cases for the last rule used to derive it (the cases are
in the same order as in the figure):

• In this case e = xk, e′ = vj , and x:τ = vj ∈ ρ. The
assumption C; % ` ρ requires that C; % ` vj , which is what
we need to prove.

• In this case e = (fix f [α](x:τ1):τ2.e
′′)
j for some f , α, x,

τ1, τ2, e′′, and j, and e′ = 〈ρ, fix f [α](x:τ1):τ2.e
′′〉j . Let

i = lbl(τ1). The first hypothesis can only be derived by one
rule and it requires that %(f) = j, %(x) = i, C; % ` τ where
τ = (∀α.τ1 → τ2)j , C; % ` e′′, and (∀%(α).i→ lbl(e′′))

j
v ∈

C(j). Then, and noting C; % ` ρ by assumption, by the rules
for acceptable analysis, C; % ` 〈ρ, fix f [α](x:τ1):τ2.e

′′〉j , as
we are required to prove.

• In this case e = (boxτ v
i)
j for some τ , v, i, and j, and

e′ = 〈vi:τ〉j . The first hypothesis can only be derived by
one rule and it requires that C; % ` box(τ)j , C; % ` vi,
(boxtr(τ) k)j

v
∈ C(j) for some k, and C(i) ⊆ C(k). Then

by the rules for acceptable analysis, C; % ` 〈vi:τ〉j , as we are
required to prove.

• In this case e = (e1[τ] e2)i for some e1, τ , e2, and i,
e′ = (e′1[τ] e2)

i, and (ρ, e1) 7−→ (ρ, e′1) is a subderivation.
The first hypothesis can only be derived by one rule and it
requires that C; % ` e1 (1), C; % ` τ (7), C; % ` e2 (2),
and fun(C; lbl(e1), lbl(τ), lbl(e2), i) (3). By the induction
hypothesis and Judgement 1, C; % ` e′1 (4). By Lemma 12,
C(lbl(e′1)) ⊆ C(lbl(e1)) (5). Combining Facts 3 and 5,
fun(C; lbl(e′1), lbl(τ), lbl(e2), i) (6). Combining Facts 4, 7,
2, and 6, and using the rules for acceptable analysis, we see that
C; % ` (e′1[τ] e2)

i, as we are required to prove.

• In this case e = (vj [τ] e2)
i for some v, j, τ , e2, and i,

e′ = (vj [τ] e′2)
i, and (ρ, e2) 7−→ (ρ, e′2) is a subderiva-

tion. The first hypothesis can only be derived by one rule
and it requires that C; % ` vj (1), C; % ` τ (7), C; % ` e2

(2), and fun(C; j, lbl(τ), lbl(e2), i) (3). By the induction hy-
pothesis and Judgement 1, C; % ` e′2 (4). By Lemma 12,
C(lbl(e′2)) ⊆ C(lbl(e2)) (5). Combining Facts 3 and 5,
fun(C; j, lbl(τ), lbl(e′2), i) (6). Combining Facts 1, 7, 4, and
6, and using the rules for acceptable analysis, we see that
C; % ` (vj [τ] e′2)

i, as we are required to prove.
• In this case:

e = (v1
j [τ] v2

k)
l

v1 = 〈ρ′, fix f [α](x:τ1):τ2.e
′′〉

e′ = ρ′′(e′′[τ/α])
l

ρ′′ = ρ′, f :τ ′ = v1
j , x:τ1[τ/α] = v2

k

τ ′ = (∀α.τ1 → τ2)j

for some ρ′, f , α, x, τ1, τ2, e′′, j, τ , v2, k, and l. The first
hypothesis can only be derived by one rule and it requires
that C; % ` v1

j (1), C; % ` τ (2), C; % ` v2
k (3), and

fun(C; j, lbl(τ), k, l) (4). Let i = lbl(τ1). Judgement 1 can
only be derived by one rule and it requires that %(f) = j
(5), %(x) = i (6), C; % ` τ ′ (7), C; % ` e′′ (8), and
(∀i.%(α)→ lbl(e′′))

j
v ∈ C(j) (9). Instantiating Fact 4 with

Fact 9, C(lbl(τ)) = C(%(α)) (10), C(k) ⊆ C(i) (11), and
C(lbl(e′′)) ⊆ C(l) (12). Judgement 7 requires that C; % ` τ1
(13). By (13), (2), and (10), by Lemma 13, C; % ` τ1[τ/α] (14).
Since C; % ` ρ, (5), (7), C(j) ⊆ C(j), (1), lbl(τ1[τ/α]) =
lbl(τ1) = i and (6), (14), (11), and (3), we can derive C; % ` ρ′′
(15). By (13), (2), and (10), by Lemma 13, C; % ` e′′[τ/α]

(16). By (15), (16), and lbl(e′′[τ/α]) = lbl(e′′) and (12), we
can derive C; % ` e′, as required.

• In this case e = (boxτ e1)i for some t, e1, and i, e′ =
(boxτ e2)i for some e2, and (ρ, e1) 7−→ (ρ, e2) is a subderiva-
tion. The first hypothesis can only be derived by one rule and it
requires that C; % ` box(τ)i (7), C; % ` e1 (1), (boxtr(τ) j)

i

v
∈

C(i) (2) for some j, and C(lbl(e1)) ⊆ C(j) (3). By the induc-
tion hypothesis and Judgement 1, C; % ` e2 (4). By Lemma 12,
C(lbl(e2)) ⊆ C(lbl(e1)) (5). Combining Facts 3 and 5 gives
C(lbl(e2)) ⊆ C(j) (6). Then by Facts 7, 4, 2, and 6, and using
the rules for acceptable analysis, C; % ` (boxτ e2)i, as we are
required to prove.

• In this case e = (unbox e1)i for some e1 and i, e′ =
(unbox e2)i for some e2, and (ρ, e1) 7−→ (ρ, e2) is a sub-
derivation. The first hypothesis can only be derived by one rule
and it requires that C; % ` e1 (1) and box (C; lbl(e1), i) (2).
By Judgement (1) and the induction hypothesis, C; % ` e2 (3).
By Lemma 12, C(lbl(e2)) ⊆ C(lbl(e1)) (4). Combining Facts
4 and 2, box (C; lbl(e2), i) (5). Combining Facts 3 and 5, by
the rules for acceptable analysis, C; % ` (unbox e2)i, as we are
required to prove.

• In this case e = (unbox 〈vi:τ〉j)
k

for some τ , v, i, j, and k,
and e′ = vi. The first hypothesis can only be derived by one
rule and it requires that C; % ` 〈vi:τ〉j , which in turn can only
be derived by one rule that requires that C; % ` vi, as we are
required to prove.

• In this case e = ρ′(e′′)
i, e′ = ρ′(e′′′)

i, and (ρ′, e′′) 7−→
(ρ′, e′′′) is a subderivation. Assumption C; % ` e requires that
C; % ` ρ′ (1), C; % ` e′′ (2), and C(lbl(e′′)) ⊆ C(i) (3).
By (1), (2), and the induction hypothesis, C; % ` e′′′ (4). By
Lemma 12, C(lbl(e′′′)) ⊆ C(lbl(e′′)) (5). Combining (3) and
(5), C(lbl(e′′′)) ⊆ C(i) (6). Using (1), (4), and (6) we derive
C; % ` ρ′(e′′′)i, as required.

• In this case e = ρ′(vi)
j and e′ = vi. The assumption C; % ` e

unpacks to requiring that C; % ` vi, as required.

Lemma 15 (Many-step reduction preserves acceptability)
If C; % `M and M 7−→∗ M ′ then C; % `M ′.

Proof: By induction on reduction sequences and Lemma 14.
The key implication of this result is that any acceptable analysis

correctly approximates the set of values to which a term might
evaluate.

Theorem 1 (Correctness)
If C; % ` (ρ, e) and (ρ, e) 7−→∗ (ρ, vi), then ∃s : lbl(s) = i∧ s ∈
C(lbl(e)).

Proof: By Lemma 15, C; % ` (ρ, vi). By inspection of the ac-
ceptability rules, there exists a shape s such that lbl(s) = i and
s ∈ C(i) (that is, the rules for value forms always require that an
appropriate shape with the same label as the value appear in the
cache for the value). By Lemma 12, C(lbl(e)) ⊇ C(i), and so
s ∈ C(i).

We can also show an important connection between typing and
acceptable flow analysis—namely that the cache of an expression’s
type is a contained in the cache of that expression.

Lemma 16
If ∆; Γ ` e : τ , C; % ` Γ, and C; % ` e then C(lbl(τ)) ⊆
C(lbl(e)) and C; % ` τ .

12 2012/3/11

Proof: The proof is by induction on the derivation of Γ ` e : τ .
Consider the cases for the last rule used (in same order as figure):

• (Variable) In this case e = xi and x:τ ∈ Γ. By the rules for
acceptable analysis, %(x) = lbl(τ) (1), C; % ` τ (2), and
C(%(x)) ⊆ C(i) (3). By (1) and (3), C(lbl(τ)) ⊆ C(i) (4).
The result is (4) and (2).

• (Fix expression) In this case, e = (fix f [α](x:τ1):τ2.e
′)
i

and τ = (∀α.τ1 → τ2)i. The first part is immediate since
lbl(τ) = lbl(e). The second part is required by C; % ` e.

• (Application) In this case:

e = (e1[τ ′] e2)
i

∆; Γ ` e1 : (∀α.τ1 → τ3)j (1)
τ = τ3[τ ′/α]

By the rules for acceptability, C; % ` e1 (2), C; % ` τ ′ (3),
C; % ` e2, and fun(C; lbl(e1), lbl(τ ′), lbl(e2), i) (4). By (1),
(2), and the induction hypothesis, C(j) ⊆ C(lbl(e1)) (5) and
C; % ` (∀α.τ1 → τ3)j (6). By (6) and the rules for accept-
ability, C; % ` τ3 (7) and (∀%(α).lbl(τ1)→ lbl(τ3))kt ∈ C(j)
(8). By (5), instantiating (4) with (8), C(lbl(τ ′)) = C(%(α))
(9) and C(lbl(τ3)) ⊆ C(i), so since lbl(τ) = lbl(τ3),
C(lbl(τ)) ⊆ C(i) (10). By (3), (7), and (9), C; % ` τ3[τ ′/α]
(11). The result is (10) and (11).

• (Box expression) In this case e = (boxτ ′ e
′)
i and τ =

box(τ ′)
i. The first part holds as lbl(e) = lbl(τ). The second

part is required by C; % ` e.
• (Unbox) In this case e = (unbox e′)

i and ∆; Γ ` e′ : box(τ)j

(1) is a subderivation. By the rules for acceptability, C; % `
e′ (2) and box (C; lbl(e′), i) (3). By (1), (2), and the induc-
tion hypothesis, C(j) ⊆ C(lbl(e′)) (4) and C; % ` box(τ)j

(5). By (5) and the rules for acceptability, C; % ` τ (6) and
(box lbl(τ))kt ∈ C(j) (7). By (4), instantiating (3) with (7),
C(lbl(τ)) ⊆ C(i) (8). The result is (8) and (6).

• (Frame) In this case e = ρ(e′)
i, ` ρ : Γ′ (1), and ∅; Γ′ ` e′ : τ

(2). By the rules for acceptability, C; % ` ρ (3), C; % ` e′ (4),
and C(lbl(e′)) ⊆ C(i) (5). By (1), (3), the rules for typing,
and the rules for acceptability, C; % ` Γ′ (6). By (6), (2), (4),
and the induction hypothesis, C(lbl(τ)) ⊆ C(lbl(e′)) (7) and
C; % ` τ (8). By (7) and (5), C(lbl(τ)) ⊆ C(i) (9). The result
is (9) and (8).

• (Constant) In this case e = ci and τ = B
i. The first part

clearly holds as lbl(e) = lbl(τ). The second part is required
by C; % ` e.

• (Fix value) In this case, e = 〈ρ, fix f [α](x:τ1):τ2.e
′〉i, τ =

(∀α.τ1 → τ2)i. The first part holds as lbl(e) = lbl(τ). The
second part is required by C; % ` e.

• (Box value) In this case e = 〈vj :τ ′〉i and τ = box(τ ′)
i. The

first part holds as lbl(e) = lbl(τ). The second part is required
by C; % ` e.

4. Unboxing
In the previous section, we developed a notion of flow analysis that
incorporated types into the analysis. In this section, we demonstrate
that this notion of analysis can be used for optimization of typed
programs by developing a type-preserving global unboxing opti-
mization. As we discussed informally in Section 2, the goal of the
unboxing optimization is to use the information provided by a flow
analysis to replace a boxed object with the contents of the box, and

�τ�Υ

�αi�Υ = αi

�Bi�Υ = B
i

�(∀α.τ1 → τ2)i�Υ = (∀α.�τ1�Υ → �τ2�Υ)i

�box(τ)i�Υ = �τ�Υ i ∈ Υ

�box(τ)i�Υ = box(�τ�Υ)i i /∈ Υ

�Γ�Υ

�x1:τ1, . . . , xn:τn�Υ = x1:�τ1�Υ, . . . , xn:�τn�Υ

�e�Υ

�xi�Υ = xi

�mi�Υ = (fix f [α](x:�τ1�Υ):�τ2�Υ.�e�Υ)i

where m = fix f [α](x:τ1):τ2.e

�(e1[τ] e2)i�Υ = (�e1�Υ[�τ�Υ] �e2�Υ)i

�(boxτ e)
i�Υ = �e�Υ i ∈ Υ

= (box�τ�Υ �e�Υ)i i /∈ Υ

�(unbox e)i�Υ = �e�Υ lbl(e) ∈ Υ

= (unbox �e�Υ)i lbl(e) /∈ Υ

�ρ(e)i�Υ = �ρ�Υ(�e�Υ)i

�ci�Υ = ci

�vi�Υ = 〈�ρ�Υ, fix f [α](x:�τ1�Υ):�τ2�Υ.�e�Υ〉i
where v = 〈ρ, fix f [α](x:τ1):τ2.e〉

�〈vj :τ〉i�Υ = �vj�Υ i ∈ Υ

= 〈�vj�Υ:�τ�Υ〉
i

i /∈ Υ

�ρ�Υ

�x1:τ1 = v1
j1 , . . . , xn:τn = vn

jn�Υ =
x1:�τ1�Υ = �v1

j1�Υ , . . . , xn:�τn�Υ = �vnjn�Υ

�M�Υ

�(ρ, e)�Υ = (�ρ�Υ, �e�Υ)

Figure 8. Unboxing

to rewrite the other types and terms of the program in a manner
consistent with this replacement. In the rest of this section, we
first develop a framework for specifying an unboxing assignment
regardless of any correctness concerns, and then separately define
a judgement specifying when such an assignment is a (provably)
reasonable one.

4.1 The unboxing optimization
We specify a particular choice of unboxing via an unboxing set Υ
that contains the set of labels of terms and types to be unboxed.
A choice of a particular Υ then induces an unboxing function
as defined in Figure 8. The induced unboxing function is defined
in a straightforward compositional manner. Box introductions are
dropped when their labels are in the unboxing set, box type con-
structors are dropped when their labels are in the unboxing set, box
eliminations are dropped when the labels of their arguments are in
the unboxing set, and all other terms and types are left unchanged.

Consider again the example from Section 2, annotated with
labels:

let f(x:box(int0)
1
) : box(box(int2)

3
)
4

= (boxx5)
6

in (unbox (unbox (f(box 37)
8
)
9
)
10

)
11

13 2012/3/11

If we choose as the unboxing set Υ = {1, 3, 4, 6, 8, 9, 10}, the
induced unboxing function produces the following optimized pro-
gram:

let f(x:int0) : int2 = x5
in f(37)

9

If we choose instead the smaller unboxing set Υ = {4, 6, 10},
the induced unboxing function produces instead the following op-
timized program:

let f(x:box(int0)
1
) : box(int2)

3
= x5

in (unbox (f(box 37)
8
)
9
)
10

An important observation about the unboxing optimization as
we have defined it here is that unlike many previous interprocedu-
ral approaches (Section 7), it only improves programs and never
introduces instructions or allocation. This is easy to see, since the
unboxing function only removes boxes (which allocate and have an
instruction cost), and unboxes (which have an instruction cost) and
never introduces any new operations at all.

4.2 Acceptable unboxings
While any choice of Υ defines an unboxing, not every unboxing
set is sensible. For example, if we elide 10 from the first example
unboxing set above, the resulting program is left with an extra un-
boxing operation in the body of the let and is not well-typed, nor
semantically valid. Just as we defined a notion of acceptable analy-
sis in Section 3, we can define a judgement that captures sufficient
conditions for ensuring correctness of an unboxing, without speci-
fying a particular method of choosing such an unboxing. By using
analyses of different precisions or choosing different optimization
strategies we may end up with quite different choices of unboxings;
however, so long as they satisfy our notion of acceptability we can
be sure that they will preserve correctness.

Informally, a choice of an unboxing set is reasonable if it meets
two criteria. Firstly, it must make uniform choices in the sense
that if a box introduction is eliminated, then all of the types and
elimination forms to which it flows must also be unboxed, and
vice versa. Secondly, we must ensure that types remain consistent
with their uses in polymorphic instantiations, since we do not allow
polymorphism over base types.

We use the notation i
Υ' j to indicate when an unboxing agrees

at two labels i and j.

i
Υ' j iff either i, j ∈ Υ or i, j /∈ Υ

The first requirement is then specified via the cache consistency
judgement, C ` Υ, given in Figure 9. This judgement enforces that
for any label i, the unboxing set must agree on i and the labels of
any shapes in the cache of i. Returning again to the first example
above, any acceptable analysis must include a box shape labeled
with 6 in the cache of label 10. The first choice of Υ above is valid
(in part) because it agrees on 6 and 10. If we elide 10 from Υ, then
the cache consistency criterion is no longer satisfied, since there is
a shape labeled with 6 in the cache for 10, but Υ does not agree on
the two labels. In this way, cache consistency enforces the global
property that if we choose to eliminate a box, we must eliminate all
unboxes and box types to which it flows.

The second requirement is specified via the consistent unboxing
judgements of Figure 9. These rules enforce the property that the
result of the unboxing contains no polymorphic instantiations at
non-pointer types. In the judgement, the rules for types relate a
type to the traceability of its unboxing: that is, the judgement
Υ ` τ : t indicates that unboxing τ with Υ will result in a type of
traceability t. The key use of this type judgement is in the term-level
polymorphic-instantiation rule, which requires that the traceability
of the unboxed type be r.

Υ ` τ : t

Υ ` αi : r Υ ` B
i : b

Υ ` (∀α.τ1 → τ2)i : r

i ∈ Υ Υ ` τ : t

Υ ` box(τ)i : t

i /∈ Υ

Υ ` box(τ)i : r

Υ ` e

Υ ` xi
Υ ` e

Υ ` (fix f [α](x:τ1):τ2.e)
i

Υ ` e1 Υ ` e2 Υ ` τ : r

Υ ` (e1[τ] e2)i

Υ ` e

Υ ` (boxτ e)
i

Υ ` e

Υ ` (unbox e)i

Υ ` ρ Υ ` e

Υ ` ρ(e)i Υ ` ci

Υ ` ρ Υ ` e

Υ ` 〈ρ, fix f [α](x:τ1):τ2.e〉i
Υ ` vi

Υ ` 〈vi:τ〉j

Υ ` ρ

∀1 ≤ j ≤ n : Υ ` vjij

Υ ` x1:τ1 = v1
i1 , . . . , xn:τn = vn

in

Υ `M

Υ ` ρ Υ ` e

Υ ` (ρ, e)

C ` Υ

∀i, s : s ∈ C(i) =⇒ i
Υ' lbl(s)

C ` Υ

Figure 9. Cache consistency, and consistent unboxing

4.3 Type Preservation
Our goal is to show that the unboxing function induced by any
consistent unboxing is in some sense correct as an optimization.
The first part of this is to show that unboxing preserves typing. One
key property is that types have non-empty caches.

Lemma 17 (Type Inhabitance)
If τ is not a type variable and C; % ` τ then C(lbl(τ)) 6= ∅.

Proof: The proof is by inspection of the rules for acceptability.
We also need several technical properties: labels agree when

their caches intersect, unboxing preserves type well formedness,
type traceability, and type equality, and unboxing commutes with
type subsitution.

14 2012/3/11

Lemma 18 (Agreement)
If C ` Υ and C(i) ∩ C(j) 6= ∅ then i

Υ' j.

Proof: The proof is by inspection of the rules for cache consis-
tency.

Lemma 19
If ∆ ` τ wf then ∆ ` �τ�Υ wf .

Proof: The proof is a straight forward induction on the structure
of τ .

Lemma 20
If C; % ` τ2 and C(lbl(τ2)) = C(%(α)) then:

• If C; % ` τ1 then �τ1[τ2/α]�Υ = �τ1�Υ[�τ2�Υ/α].
• If C; % ` e then �e[τ2/α]�Υ = �e�Υ[�τ2�Υ/α].

Proof:
• The proof is by induction on the structure of τ1. Consider the

cases for τ1:

Case 1, τ1 = αi: If τ2 = σj and �σj�Υ = σ′
k then

τ1[τ2/α] = σi, thus �τ1[τ2/α]�Υ = �σi�Υ, and also
�τ1�Υ[�τ2�Υ/α] = σ′

i. Thus I need to show that �σi�Υ =

σ′
i. When σ is not a box type, this condition follows easily

from the definitions. When σ is a box type, this condition

follows if i
Υ' j. By C; % ` τ2 and Lemma 17, C(j) 6= ∅.

By C; % ` τ1, C(lbl(τ2)) = C(%(α)), and the rules for

acceptability, C(i) = C(j). By Lemma 18, i
Υ' j, as

required.

Case 2, τ1 = βi and α 6= β: In this case τ1[τ2/α] = τ1,
�τ1�Υ = τ1, and the result is immediate.

Case 3, τ1 = (∀α′.τ3 → τ4)
i: Then C; % ` τ1 requires

C; % ` τ3 and C; % ` τ4. By the induction hypothe-
sis, �τ3[τ2/α]�Υ = �τ3�Υ[�τ2�Υ/α] and �τ4[τ2/α]�Υ =
�τ4�Υ[�τ2�Υ/α]. Thus:

�τ1[τ2/α]�Υ
= �(∀α′.τ3[τ2/α]→ τ3[τ2/α])

i�Υ
= (∀α′.�τ3[τ2/α]�Υ → �τ3[τ2/α]�Υ)

i

= (∀α′.�τ3�Υ[�τ2�Υ/α]→ �τ4�Υ[�τ2�Υ/α])
i

= (∀α′.�τ3�Υ → �τ4�Υ)
i
[�τ2�Υ/α]

= �τ1�Υ[�τ2�Υ/α]

Case 4, τ1 = box(τ)i: Then C; % ` τ1 requires C; % ` τ .
The induction hypothesis is �τ [τ2/α]�Υ = �τ�Υ[�τ2�Υ/α].
If i ∈ Υ then �τ1�Υ = �τ�Υ and �τ1[τ2/α]�Υ =
�τ [τ2/α]�Υ, as required. If i /∈ Υ then:

�τ1[τ2/α]�Υ
= �box(τ [τ2/α])i�Υ
= box(�τ [τ2/α]�Υ)i

= box(�τ�Υ[�τ2�Υ/α])i

= box(�τ�Υ)i[�τ2�Υ/α]
= �τ1�Υ[�τ2�Υ/α]

• The proof is a straight forward induction on the structure of e.

Lemma 21
If Υ ` τ : t then tr(�τ�Υ) = t.

Proof: The proof is a straight forward induction on the derivation
of Υ ` τ : t.

Lemma 22
If ` τ1 = τ2, C ` Υ, C; % ` τ1, C; % ` τ2, and either
C(lbl(τ1)) ⊆ C(lbl(τ2)) or C(lbl(τ2)) ⊆ C(lbl(τ1)) then `
�τ1�Υ = �τ2�Υ.

Proof: The proof is by induction on the derivation of ` τ1 = τ2.
Consider the last rule used (in the same order as the figure):

• (Type variable) In this case τ1 = αi and τ2 = αj . By definition,
�τ1�Υ = τ1 and �τ2�Υ = τ2, and the result is immediate.

• (Base) In this case τ1 = B
i and τ2 = B

j . By definition,
�τ1�Υ = τ1 and �τ2�Υ = τ2, and the result is immediate.

• (Function) In this case:

τ1 = (∀α.τ11 → τ12)i1

τ2 = (∀α.τ21 → τ22)i2

` τ11 = τ21 (1)
` τ12 = τ22 (2)

WLOG, assume C(i1) ⊆ C(i2) (3). By the rules for accept-
ability:

C; % ` τ11 (4)
C; % ` τ12 (5)

(∀%(α).lbl(τ11)→ lbl(τ12))jt ∈ C(i1) (6)
C; % ` τ21 (7)
C; % ` τ22 (8)
fun(C; i2, %(α), lbl(τ21), lbl(τ22)) (9)

By (6), (3), and (9), C(lbl(τ21)) ⊆ C(lbl(τ11)) (10) and
C(lbl(τ12)) ⊆ C(lbl(τ22)) (11). By (1), (4), (7), (10), and the
induction hypothesis, ` �τ11�Υ = �τ21�Υ (12). By (2), (5), (8),
(11), and the induction hypothesis, ` �τ12�Υ = �τ22�Υ (13).
By (12), (13), and the typing rules:

` (∀α.�τ11�Υ → �τ12�Υ)i1 = (∀α.�τ21�Υ → �τ22�Υ)i2

By definition:

` �(∀α.τ11 → τ12)i1�Υ = �(∀α.τ21 → τ22)i2�Υ

as required.

• (Box) In this case τ1 = box(τ ′1)
i1 , τ2 = box(τ ′2)

i2 , and
` τ ′1 = τ ′2 (1). WLOG, assume C(i1) ⊆ C(i2) (2). By the
rules for acceptability, C; % ` τ ′1 (3), (box lbl(τ ′1))

j
t ∈ C(i1)

(4), C; % ` τ ′2 (5), and box (C; i2, lbl(τ ′2)) (6). By (4), (2), and
(6), C(lbl(τ ′1)) ⊆ C(lbl(τ ′2)) (7). By (1), (3), (5), (7), and the
induction hypothesis, ` �τ ′1�Υ = �τ ′2�Υ (8). By Lemmas 17

and 18, i1
Υ' i2. There are two cases:

Case 1, i1 ∈ Υ: In this case, �τ1�Υ = �τ ′1�Υ, �τ2�Υ =
�τ ′2�Υ, and the result is (8).

Case 2, i2 /∈ Υ: In this case, �τ1�Υ = box(�τ ′1�Υ)
i1 ,

�τ2�Υ = box(�τ ′2�Υ)
i2 , and the result follows from (8) and

the typing rules.

Now we can prove that unboxing preserves typing.

Theorem 2 (Consistent unboxings preserve typing)
If C ` Υ then:

• If ∆; Γ ` e : τ , C; % ` Γ, C; % ` e, and Υ ` e then
∆; �Γ�Υ ` �e�Υ : �τ�Υ.

• If ` ρ : Γ, C; % ` ρ, and Υ ` ρ then ` �ρ�Υ : �Γ�Υ.
• If `M : τ , C; % `M , and Υ `M then ` �M�Υ : �τ�Υ.

Proof: The proof is by induction on the structure of the typing
judgement. Consider the cases, in the same order as the figure, for
the last rule used in the derivation:

15 2012/3/11

• (Variable) In this case e = xi and x:τ ∈ Γ. Then �e�Υ = xi

and clearly x:�τ�Υ ∈ �Γ�Υ, so the result follows by the typing
rules.

• (Fix expression) In this case e = (fix f [α](x:τ1):τ2.e
′)
i.

The typing rule requires that both τ = (∀α.τ1 → τ2)i and
∆; Γ, f :τ, x:τ1 ` e′ : τ2. The assumption C; % ` e requires
%(f) = i, %(x) = lbl(τ1), C ` τ , and C; % ` e′. From C ` τ
and the rules for acceptability, C ` τ1. From these facts, C; % `
Γ, f :τ, x:τ1. The assumption Υ ` e requires that Υ ` e′. By
the induction hypothesis, ∆; �Γ, f :τ, x:τ1�Υ ` �e′�Υ : �τ2�Υ.
Since:

�Γ, f :τ, x:τ1�Υ = �Γ�Υ, f :(∀α.�τ1�Υ → �τ2�Υ)i, x:�τ2�Υ

by the typing rules:

∆; �Γ�Υ ` (fix f [α](x:�τ1�Υ):�τ2�Υ.�e
′�Υ)

i
:

(∀α.�τ1�Υ → �τ2�Υ)i

The result follows since:

�e�Υ = (fix f [α](x:�τ1�Υ):�τ2�Υ.�e
′�Υ)

i

�τ�Υ = (∀α.�τ1�Υ → �τ2�Υ)i

• (Application) In this case, e = (e1[τ ′] e2)
i. The typing rule,

C; % ` e, and Υ ` e require that:

∆; Γ ` e1 : (∀α.τ1 → τ3)j (1)
τ = τ3[τ ′/α]
∆; Γ ` e2 : τ2 (2)
∆ ` τ ′ wf (3)
` τ1[τ ′/α] = τ2 (4)
C; % ` e1 (5)
C; % ` τ ′ (6)
C; % ` e2 (7)
fun(C; lbl(e1), lbl(τ), lbl(e2), i) (8)
Υ ` e1 (10)
Υ ` e2 (11)
Υ ` τ ′ : r (12)

for some τ1, τ3, j, and τ2. By (1), (5), (10), (2), (7), (11), and
the induction hypothesis:

∆; �Γ�Υ ` �e1�Υ : �(∀α.τ1 → τ)j�Υ (13)
∆; �Γ�Υ ` �e2�Υ : �τ2�Υ (14)

By definition �(∀α.τ1 → τ3)j�Υ = (∀α.�τ1�Υ → �τ3�Υ)j .
By (3) and Lemma 19, ∆ ` �τ ′�Υ wf (15). By (12) and
Lemma 21, tr(�τ ′�Υ) = r (16). By (1), (2), and Lemma 16:

C(j) ⊆ C(lbl(e1)) (17)

C; % ` (∀α.τ1 → τ3)j (18)
C(lbl(τ2)) ⊆ C(lbl(e2)) (19)
C ` τ2 (20)

By (18) and the rules for acceptability:

C; % ` τ1 (21)
C; % ` τ3 (22)

(∀%(α).lbl(τ1)→ lbl(τ3))kt ∈ C(j) (23)

By (23), (17), and (8), C(lbl(τ ′)) = C(%(α)) (24) and
C(lbl(e2)) ⊆ C(lbl(τ1)). Hence by (19), C(lbl(τ2)) ⊆
C(lbl(τ1)). Since lbl(τ1[τ ′/α]) = lbl(τ1), C(lbl(τ2)) ⊆
C(lbl(τ1[τ ′/α])) (25). By (21), (6), (24), and Lemma 13,
C; % ` τ1[τ ′/α] (26). By (4), (26), (20), (25), and Lemma 22,
` �τ1[τ ′/α]�Υ = �τ2�Υ. By (21), (6), (24), and Lemma 20,
` �τ1�Υ[�τ ′�Υ/α] = �τ2�Υ (27). Thus by (13), (14), (15), (16),
(27), and the typing rules, ∆; �Γ�Υ ` (�e1�Υ[�τ ′�Υ] �e2�Υ)

i
:

�τ3�Υ[�τ ′�Υ/α]. By definition, (22), (6), (24), and Lemma 20,
∆; �Γ�Υ ` �(e1[τ ′] e2)

i�Υ : �τ�Υ, as required.

• (Box expression) In this case, e = (boxτ ′′ e
′)
i for some e′ and

i. The typing rule requires that τ = box(τ ′′)
i, ∆ ` τ ′′ wf ,

∆; Γ ` e′ : τ ′, and ` τ ′′ = τ ′ for some τ ′. The assumption
C; % ` e requires that C ` τ and C; % ` e′. The assumption
Υ ` e requires that Υ ` e′. By the induction hypothesis,
∆; �Γ�Υ ` �e′�Υ : �τ ′�Υ. There are two subcases:

If i ∈ T then �e�Υ = �e′�Υ and �τ�Υ = �τ ′�Υ and the
result is immediate.

If i /∈ T then �e�Υ = (box�τ ′′�Υ �e′�Υ)
i and �τ�Υ =

box(�τ ′�Υ)
i. The result follows by the typing rules if

∆ ` �τ ′�Υ wf , which holds by Lemma 19, and `
�τ ′′�Υ = �τ ′�Υ, which holds by Lemma 22 if its other
three premises hold. Since C ` τ , by the rules for ac-
ceptability, box (C; i, lbl(τ ′′)) (1) and C ` τ ′′, showing
the first premise. Since ∆; Γ ` e′ : τ ′, by Lemma 16,
C(lbl(τ ′)) ⊆ C(lbl(e′)) (2) and C ` τ ′, showing the
second premise. By C; % ` e, (boxtr(τ ′) lbl(e′))

j

v
∈

C(i). Thus by (1), C(lbl(e′)) ⊆ C(lbl(τ ′′)), so by (2),
C(lbl(τ ′)) ⊆ C(lbl(τ ′′)), showing the third premise, as
required.

• (Unbox) In this case, e = (unbox e′)
i for some e′ and i. The

typing rule requires that ∆; Γ ` e′ : box(τ)j for some j.
The assumption C; % ` e requires C; % ` e′. The assumption
Υ ` e requires Υ ` e′. By the induction hypothesis, ∆; �Γ�Υ `
�e′�Υ : �box(τ)j�Υ. By Lemma 16, C(j) ⊆ C(lbl(e′)). By

Lemmas 17 and 18, j
Υ' lbl(e′). There are two subcases:

If j ∈ Υ then �e�Υ = �e′�Υ and �box(τ)j�Υ = �τ�Υ and
the result is immediate.

If j /∈ Υ then �e�Υ = (unbox �e′�Υ)
i and �box(τ)j�Υ =

box(�τ�Υ)j . The result then follows by the typing rules.

• (Frame) In this case, e = ρ′(e′)
i for some ρ′, e′, and i. The

typing rule requires that ` ρ′ : Γ′ and ∆; Γ′ ` e′ : τ for
some Γ′. The assumption C; % ` e requires that C; % ` ρ′ and
C; % ` e′. The former requires that C; % ` Γ′. The assumption
Υ ` e requires Υ ` e′. By the induction hypothesis, ` �ρ′�Υ :
�Γ′�Υ and ∆; �Γ′�Υ ` �e′�Υ : �τ�Υ. So by the typing rules,
∆; �Γ�Υ ` �ρ′�Υ(�e′�Υ)

i
: �τ�Υ. The result follows since

�e�Υ = �ρ′�Υ(�e′�Υ)
i.

• (Constant) In this case e = ci for some c and i. The typing rule
requires that τ = B

i. Clearly, �e�Υ = ci, �τ�Υ = B
i, and the

result follows by the typing rules.

• (Fix value) In this case e = 〈ρ, fix f [α](x:τ1):τ2.e
′〉i. The

typing rule require that τ = (∀α.τ1 → τ2)i, ` ρ : Γ′, and
∆, α; Γ′, f :τ, x:τ1 ` e′ : τ2. The assumption C; % ` e requires
C; % ` ρ, from which C; % ` Γ′, %(f) = i, %(x) = lbl(τ1),
C ` τ , and C; % ` e′. From C ` τ and the rules for
acceptability, C ` τ1. From these facts, C; % ` Γ′, f :τ, x:τ1.
The assumption Υ ` e requires Υ ` e′. By the induction
hypothesis, ` �ρ�Υ : �Γ′�Υ and ∆, α; �Γ′, f :τ, x:τ1�Υ `
�e′�Υ : �τ2�Υ. Since:

�Γ′, f :τ, x:τ1�Υ = �Γ′�Υ, f :(∀α.�τ1�Υ → �τ2�Υ)i, x:�τ2�Υ

by the typing rules:

∆; �Γ�Υ ` 〈�ρ�Υ, fix f [α](x:�τ1�Υ):�τ2�Υ.�e
′�Υ〉

i
:

(∀α.�τ1�Υ → �τ2�Υ)i

The result follows since:

�e�Υ = 〈�ρ�Υ, fix f [α](x:�τ1�Υ):�τ2�Υ.�e
′�Υ〉

i

�τ�Υ = (∀α.�τ1�Υ → �τ2�Υ)i

16 2012/3/11

• (Box value) In this case, e = 〈vj :τ ′′〉i for some v, i, and j. The
typing rule requires that τ = box(τ ′′)

i, ∆ ` τ ′′ wf , ∆; Γ `
vj : τ ′, and ` τ ′′ = τ ′ for some τ ′. The assumption C; % ` e
requires that C ` τ and C; % ` vj . The assumption Υ ` e
requires Υ ` vj . By the induction hypothesis, ∆; �Γ�Υ `
�vj�Υ : �τ ′�Υ. There are two subcases:

If i ∈ T then �e�Υ = �vj�Υ and �τ�Υ = �τ ′�Υ and the
result is immediate.

If i /∈ T then �e�Υ = 〈�vj�Υ:�τ ′′�Υ〉
i and �τ�Υ =

box(�τ ′�Υ)
i. The result follows by the typing rules if

∆ ` �τ ′′�Υ wf , which holds by Lemma 19, and `
�τ ′′�Υ = �τ ′�Υ, which holds by Lemma 22 if its other
three premises hold. Since C ` τ , by the rules for ac-
ceptability, box (C; i, lbl(τ ′′)) (1) and C ` τ ′′, showing
the first premise. Since ∆; Γ ` vj : τ ′, by Lemma 16,
C(lbl(τ ′)) ⊆ C(j) (2) and C ` τ ′, showing the second
premise. By C; % ` e, (boxtr(τ ′) j)

k

v
∈ C(i). Thus by (1),

C(j) ⊆ C(lbl(τ ′′)), so by (2), C(lbl(τ ′)) ⊆ C(lbl(τ ′′)),
showing the third premise, as required.

• (Environment) In this case ρ = x1:τ1 = v1
i1 , . . . , xn:τn =

vn
in and Γ = x1:τ1, . . . , xn:τn. The typing rule requires that

∅; ∅ ` vjij : τ ′j and ` τj = τ ′j for 1 ≤ j ≤ n and some τ ′js.
The assumption C; % ` ρ requires C; % ` τj and C; % ` vjij
for 1 ≤ j ≤ n. Clearly C; % ` Γ′ where Γ′ is empty. The
assumption Υ ` ρ requires Υ ` vj

ij for 1 ≤ j ≤ n. By
the induction hypotheis, ∅; ∅ ` �vjij �Υ : �τ ′j�Υ for 1 ≤
j ≤ n. By the rules for acceptability, C(ij) ⊆ C(lbl(τj))
for 1 ≤ j ≤ n. By Lemma 16, C(τ ′j) ⊆ C(ij) and C ` τ ′j
for 1 ≤ j ≤ n. Thus C(τ ′j) ⊆ C(τj) for 1 ≤ j ≤ n.
By Lemma 22, ` �τj�Υ = �τ ′j�Υ for 1 ≤ j ≤ n. Then
by the typing rules ` x1:�τ1�Υ = �v1

i1�Υ , . . . , xn:�τn�Υ =
�vnin�Υ : x1:�τ1�Υ, . . . , xn:�τn�Υ. The result follows since
�ρ�Υ = x1:�τ1�Υ = �v1

i1�Υ , . . . , xn:�τn�Υ = �vnin�Υ and
�Γ�Υ = x1:�τ1�Υ, . . . , xn:�τn�Υ.

• (Machine state) In this case M = (ρ, e). By the typing rule,
` ρ : Γ and ∅; Γ ` e : τ for some Γ. The assumption C; % `M
requires both C; % ` ρ and C; % ` e. The former requires
C; % ` Γ. The assumption Υ ` M requires Υ ` ρ and Υ ` e.
By the induction hypothesis, ` �ρ�Υ : �Γ�Υ and ∅; �Γ�Υ `
�e�Υ : �τ�Υ. So by the typing rules, ` (�ρ�Υ, �e�Υ) : �τ�Υ.
The result follows since �M�Υ = (�ρ�Υ, �e�Υ).

A consequence of type preservation is that unboxed well-typed
programs are traceable.

Theorem 3
If `M : τ , C; % `M , C ` Υ, and Υ `M then ` �M�Υ tr.

Proof: The proof follows from Theorem 2 and Lemma 11.

4.4 Coherence
The other part of proving correctness is to show that unboxing
preserves semantics in some appropriate sense. That requires two
key lemmas—that a step of the program can be matched by zero
or more steps of the unboxed program and that consistency is
preserved under reduction.

To show the first lemma, we need three technical lemmas—that
a value’s cache is nonempty, that reduction preserves the unboxing
or not of the outermost label, and a multistep compositionality
property.

Lemma 23 (Inhabitance)
If C; % ` vk then ∃s ∈ C(k) such that lbl(s) = k.

Proof: By inspection of the acceptable analysis and acceptable
instantiation rules.

Lemma 24 (Unboxing set preservation)
If C; % ` ρ, C; % ` e, C ` Υ, and (ρ, e1) 7−→ (ρ, e2) then

lbl(e)
Υ' lbl(e′).

Proof: All of the cases for which lbl(e1) = lbl(e2) follow
immediately. For the remaining cases:

• If (ρ, xk) 7−→ (ρ, vj) where x:τ = vj ∈ ρ then by the as-
sumptions we have that %(x) = lbl(τ) (1), C(j) ⊆ C(lbl(τ))
(2) and C(%(x)) ⊆ C(k) (3), so by transitivity we have C(j) ⊆
C(k) (4). By Inhabitance (Lemma 23) we have an s ∈ C(j) (5)
such that lbl(s) = j (6), and so by Agreement (Lemma 18)

we have k
Υ' j. Since lbl(e) = k and lbl(e′) = j, the result

follows.

• If (ρ, (unbox 〈vi:t〉j)
k
) 7−→ (ρ, vi) then we must show that

k
Υ' i. By Inhabitance we have s ∈ C(i) with lbl(s) = i, so by

Agreement, it suffices to show that C(i) ⊆ C(k). By the box
rule for an acceptable analysis, there is a s = (boxt l)

j
v ∈ C(j)

such that C(i) ⊆ C(l). Since s ∈ C(j), by the rule for unbox,
C(l) ⊆ C(k), so C(i) ⊆ C(k) and we’re done.

• If (ρ, ρ′(vi)
j
) 7−→ (ρ, vi) then we must show that j

Υ' i. By
Inhabitance, there is an s ∈ C(i), and by the acceptable analysis
rule for frames we have that C(i) ⊆ C(j), so by Agreement we

have that j
Υ' i.

Lemma 25 (Many step compositionality)
If (ρ, e1) 7−→∗ (ρ, e2) then:

• (ρ, (e1 e)
i) 7−→∗ (ρ, (e2 e)

i)

• (ρ, (vj e1)
i
) 7−→∗ (ρ, (vj e2)

i
)

• (ρ, (boxτ e1)i) 7−→∗ (ρ, (boxτ e2)i)
• (ρ, (unbox e1)i) 7−→∗ (ρ, (unbox e2)i)

• (ρ, ρ′(e1)
i
) 7−→∗ (ρ, ρ′(e2)

i
)

Proof: The proof is by an easy induction on the length of the
reduction sequences.

Theorem 4 (Single step reduction coherence)
If ` M : τ , C; % ` M , C ` Υ, Υ ` M , and M 7−→ M ′ then
�M�Υ 7−→∗ �M ′�Υ.

Proof: The proof is by induction on the derivation of M 7−→M ′,
consider the cases for the last rule used to derive it:

• If (ρ, xk) 7−→ (ρ, vj) where x:τ = vj ∈ ρ then by definition
�M�Υ = (�ρ�Υ, x

k), �M ′�Υ = (�ρ�Υ, �v
j�Υ), and x:�τ�Υ =

�vj�Υ ∈ �ρ�Υ. Thus �M�Υ 7−→ �M ′�Υ by the same rule.
• If:

(ρ, (fix f [α](x:τ1):τ2.e1)j) 7−→
(ρ, 〈ρ, fix f [α](x:τ1):τ2.e1〉j)

then the unboxings of the e and e′ are of the same form, and the
same reduction step applies.

• If (ρ, (boxτ ′ vt
i)
j
) 7−→ (ρ, 〈vti:τ ′〉

j
) where tr(τ ′) = t then:

17 2012/3/11

If j /∈ Υ then:

By the definition of unboxing, �e�Υ = (box�τ ′�Υ v
′
t′
k
)
j

where v′t′
k

= �vti�Υ.
By hypothesis, ` ρ : Γ, ; Γ ` vti : τ ′′ and ` τ ′ = τ ′′ for
some τ ′′. By hypothesis, Υ ` vti. By Theorem 2, ∅; �Γ�Υ `
v′t′

k
: �τ ′′�Υ. The proof of that theorem also showed that `

�τ ′�Υ = �τ ′′�Υ, so by Lemma 4, tr(�τ ′�Υ) = tr(�τ ′′�Υ).
By Lemma 6, tr(�τ ′′�Υ) = t′, so tr(�τ ′�Υ) = t′.
By definition of reduction (�ρ�Υ, (box�τ ′�Υ v

′
t′
k
)
j
) 7−→

(�ρ�Υ, 〈v′t′
k
:�τ ′�Υ〉

j
).

If j ∈ Υ then:
By definition of unboxing

�e�Υ = v′t′
k where v′t′

k
= �vti�Υ

By definition of reduction
(�ρ�Υ, v

′
t′
k
) 7−→∗ (�ρ�Υ, v

′
t′
k
)

• If (ρ, (e1[τ ′] e2)
j
) 7−→ (ρ, (e′1[τ ′] e2)

j
) then:

By definition of C; % `M we have that C; % ` ρ and C; % ` e1.
Hence we have that C; % ` (ρ, e1). By the typing rules we also
have that ` ρ : Γ and ∅; Γ ` e1 : τ1 for some Γ and τ1,
so ` (ρ, e1) : τ1. By the rules for consistency, Υ ` ρ and
Υ ` e1, so Υ ` (ρ, e1). Hence by induction we have that
(�ρ�Υ, �e1�Υ) 7−→∗ (�ρ�Υ, �e

′
1�Υ).

By Lemma 25
(�ρ�Υ, (�e1�Υ[�τ ′�Υ] �e2�Υ)

j
) 7−→∗

(�ρ�Υ, (�e
′
1�Υ[�τ ′�Υ] �e2�Υ)

j
)

By definition of unboxing
(�ρ�Υ, �(e1[τ ′] e2)

j�Υ) 7−→∗ (�ρ�Υ, �(e
′
1[τ ′] e2)

j�Υ)

• If (ρ, (e1[τ ′] e2)
j
) 7−→ (ρ, (e1[τ ′] e′2)

j
) then the argument

follows by the symmetric argument to the previous case.

• If (ρ, (vf
j [τ ′] vt

k)
l
) 7−→ (ρ, ρ′′(e′′[τ ′/α])

l
) where:

vf = 〈ρ′, fix f [α](x:τ1):τ2.e
′′〉

ρ′′ = ρ′, f :τ = vf
j , x:τ ′1 = vt

k

τ = (∀α.τ1 → τ2)j

τ ′1 = τ1[τ ′/α]

then:
By definition of unboxing we have that:

�e�Υ = (v′f
j
[�τ ′�Υ] vt′

k′)
l

v′f = 〈�ρ′�Υ, fix f [α](x:�τ1�Υ):�τ2�Υ.�e
′′�Υ〉

vt′
k′ = �vtk�Υ

�e′�Υ = (�ρ′�Υ, f :�τ�Υ = v′f
j
, x:�τ ′1�Υ = vt′

k′)
(�e′′[τ ′/α]�Υ)l

By hypothesis, ` ρ : Γ, ∅; Γ ` vt
k : τ ′′1 , and ` τ ′1 = τ ′′1 .

By Theorem 2, ∅; �Γ�Υ ` vt′
k′ : �τ ′′1 �Υ. The proof of that

theorem also showed that ` �τ ′1�Υ = �τ ′′1 �Υ. By Lemma 4,
tr(�τ ′1�Υ) = tr(�τ ′′1 �Υ). By Lemma 6, tr(�τ ′′1 �Υ) = t′. Thus
tr(�τ ′1�Υ) = t′. So by the application beta rule:

(�ρ�Υ, �e�Υ) 7−→ (�ρ�Υ, ρ
′′′(e′′′)

l
)

where:

ρ′′′ = �ρ�Υ, f :τ ′′ = v′f
j
, x:τ ′′1 = vt′

k′

τ ′′ = (∀α.�τ1�Υ → �τ2�Υ)j

τ ′′1 = �τ1�Υ[�τ ′�Υ/α]
e′′′ = �e′′�Υ[�τ ′�Υ/α]

By definition of unboxing, τ ′′ = �τ�Υ. The proof of the
theorem above also showed that C; % ` τ1, C; % ` τ ′, and
C(lbl(τ ′)) = C(%(α)). By the rules for acceptability, clearly
C; % ` e′′. By Lemma 20, τ ′′1 = �τ ′1�Υ and e′′′ = �e′′[τ ′/α]�Υ.
Putting that altogether, ρ′′′(e′′′)l = �e′�Υ, as required.

• If (ρ, (boxτ ′ e)
j) 7−→ (ρ, (boxτ ′ e

′)
j
) then: By definition of

acceptability C; % ` ρ and C; % ` e, so C; % ` (ρ, e). By
the typing rules, ` ρ : Γ and ∅; Γ ` e : τ ′′ for some Γ and
τ ′′, so ` (ρ, e) : τ ′′. By the rules for consistency, Υ ` ρ
and Υ ` e, so Υ ` (ρ, e). So by the induction hypothesis,
(�ρ�Υ, �e�Υ) 7−→∗ (�ρ�Υ, �e

′�Υ).

If j ∈ Υ then:
By definition of unboxing

�(boxτ ′ e)
j�Υ = �e�Υ

By definition of unboxing
�(boxτ ′ e

′)
j�Υ = �e′�Υ

By induction
(�ρ�Υ, �e�Υ) 7−→∗ (�ρ�Υ, �e

′�Υ)

If j /∈ Υ then:
By definition of unboxing:

�(boxτ ′ e)
j�Υ = (box�τ ′�Υ �e�Υ)j

�(boxτ ′ e
′)
j�Υ = (box�τ ′�Υ �e′�Υ)

j

Hence by the induction hypothesis and Lemma 25 we have
that:

(�ρ�Υ, (box�τ ′�Υ �e�Υ)j) 7−→∗

(�ρ�Υ, (box�τ ′�Υ �e′�Υ)
j
)

• If (ρ, (unbox e)j) 7−→ (ρ, (unbox e′)
j
) then let i = lbl(e) and

i′ = lbl(e′). By Lemma 24 we have that i
Υ' i′. By the rules

for acceptability, C; % ` ρ and C; % ` e, so C; % ` (ρ, e).
By the typing rules, ` ρ : Γ and ∅; Γ ` e : τ ′ for some Γ
and τ ′, so ` (ρ, e) : τ ′. By the rules for consistency, Υ ` ρ
and Υ ` e, so Υ ` (ρ, e). So by the induction hypothesis,
(�ρ�Υ, �e�Υ) 7−→∗ (�ρ�Υ, �e

′�Υ).

If i, i′ ∈ Υ then:
By definition of unboxing

�(unbox e)j�Υ = �e�Υ
By definition of unboxing

�(unbox e′)j�Υ = �e′�Υ
By induction

(�ρ�Υ, �e�Υ) 7−→∗ (�ρ�Υ, �e
′�Υ)

If i, i′ /∈ Υ then:
By definition of unboxing

�(unbox e)j�Υ = (unbox �e�Υ)j

By definition of unboxing
�(unbox e′)j�Υ = (unbox �e′�Υ)

j

By induction
(�ρ�Υ, �e�Υ) 7−→∗ (�ρ�Υ, �e

′�Υ)

By Lemma 25
(�ρ�Υ, �(unbox e)

j�Υ) 7−→∗

(�ρ�Υ, �(unbox e
′)
j�Υ)

• If (ρ, (unbox 〈vi:τ〉j)
k
) 7−→ (ρ, vi) then:

If j ∈ Υ then:

18 2012/3/11

By definition of unboxing

�(unbox 〈vi:τ〉j)
k
�Υ = �〈vi:τ〉j�Υ = �vi�Υ

So in zero steps

(�ρ�Υ, �(unbox 〈vi:τ〉
j
)
k
�Υ) 7−→∗ (�ρ�Υ, �v

i�Υ)

If j /∈ Υ then:
By definition of unboxing

�(unbox 〈vi:τ〉j)
k
�Υ = (unbox �〈vi:τ〉j�Υ)

k

By definition of unboxing

(unbox �〈vi:τ〉j�Υ)
k

= (unbox 〈�vi�Υ:�τ�Υ〉
j
)
k

By definition of reduction

(�ρ�Υ, (unbox 〈�vi�Υ:�τ�Υ〉
j
)
k
) 7−→

(�ρ�Υ, �v
i�Υ)

• If (ρ, ρ′(e1)
i
) 7−→ (ρ, ρ′(e2)

i
) then:

By the rules for acceptability, C; % ` ρ′ and C; % ` e1, so
C; % ` (ρ′, e1). By the typing rules, ` ρ′ : Γ′ and ∅; Γ′ ` e1 : τ
for some Γ′, so ` (ρ′, e1) : τ . By the rules for consistency,
Υ ` ρ′ and Υ ` e1, so Υ ` (ρ′, e1). So by the induction
hypothesis, (�ρ′�Υ, �e1�Υ) 7−→∗ (�ρ′�Υ, �e2�Υ).

By definition of unboxing
�ρ′(e1)

i�Υ = �ρ′�Υ(�e1�Υ)
i

By definition of unboxing
�ρ′(e2)

i�Υ = �ρ′�Υ(�e2�Υ)
i

By induction
(�ρ′�Υ, �e1�Υ) 7−→∗ (�ρ′�Υ, �e2�Υ)

By Lemma 25
(�ρ�Υ, �ρ

′�Υ(�e1�Υ)
i
) 7−→∗ (�ρ�Υ, �ρ

′�Υ(�e2�Υ)
i
)

• If (ρ, ρ′(vi)
j
) 7−→ (ρ, vi) then:

By definition of unboxing
�ρ′(vi)

j
�Υ = �ρ′�Υ(�vi�Υ)

j

Unboxed value is a value, so by reduction rules
(�ρ�Υ, �ρ

′�Υ(�vi�Υ)
j
) 7−→ (�ρ�Υ, �v

i�Υ)

To show preservation of consistency we need a type substitution
lemma.

Lemma 26
If C ` Υ, Υ ` τ : r, τ is not a type variable, and C(lbl(τ)) =
C(%(α)) then:

• If Υ ` τ ′ : r and C; % ` τ ′ then Υ ` τ ′[τ/α] : r.
• If Υ ` e and C; % ` e then Υ ` e[τ/α].
• If Υ ` ρ and C; % ` ρ then Υ ` ρ[τ/α].

Proof: The proof is by simultaneous induction on the derivation
of Υ ` τ ′ : t, Υ ` e, and Υ ` ρ. The cases for expressions and
environments are straight forward. Consider the cases for types:

• Case 1, τ ′ = αi: If τ = σj then τ ′[τ/α] = σi. Since
C; % ` τ ′, C(i) = C(%(α)), so C(i) = C(j). By Lemmas 17

and 18, i
Υ' j. Then by inspection of the rules, Υ ` σi : r as

Υ ` σj : r.
• Case 2, τ ′ = βi and α 6= β: Then τ ′[τ/α] = τ ′ and the result

is immediate.
• Case 3, τ ′ = B

i: Then Υ ` τ ′ : r is not possible.

• Case 4, τ ′ = (∀β.τ1 → τ2)i: Then Υ ` τ ′[τ/α] : r, as
required.

• Case 5, τ ′ = (box(τ ′′))
i, i ∈ Υ: By the rule, Υ ` τ ′′ : r.

Assumption C; % ` τ ′ requires C; % ` τ ′′. By the induc-
tion hypothesis, Υ ` τ ′′[τ/α] : r. By the consistency rules,
Υ ` box(τ ′′[τ/α])

i
: r. By definition of substitution, Υ `

box(τ ′′)
i
[τ/α] : r, as required.

• Case 6, τ ′ = (box(τ ′′))
i, i /∈ Υ: Then Υ ` τ ′[τ/α] : r, as

required.

Lemma 27
If Υ ` M1, C ` Υ, C; % ` M1, ` M1 : τ , and M1 7−→ M2 then
Υ `M2.

Proof: The proof is by induction on the derivation ofM1 7−→M2.
Let M1 = (ρ, e1) and M2 = (ρ, e2). By the rules for consistency,
Υ ` ρ and Υ ` e1. The result follows if Υ ` e2. The typing rules
require ` ρ : Γ and ∅; Γ ` e1 : τ ′ for some Γ and τ ′. Assumption
C; % ` M requires C; % ` ρ and C; % ` e1. Consider the cases for
the last rule used (in the same order as the figure):

• (Variable) In this case: e1 = xi, e2 = vj , and x:τ ′ = vj ∈ ρ.
By Υ ` ρ, Υ ` vj , as required.

• (Fix expression) In this case: e1 = (fix f [α](x:τ1):τ2.e)
i and

e2 = 〈ρ, fix f [α](x:τ1):τ2.e〉i. Then Υ ` e1 requires Υ ` e,
then since Υ ` ρ, Υ ` e2, as required.

• (Box expression) In this case: e1 = (boxτ v
i)
j and e2 =

〈vi:τ〉j . Then Υ ` e1 requires Υ ` vi, so Υ ` e2, as required.

• (Application left) In this case, we have e1 = (e3[τ] e4)i,
e2 = (e5[τ] e4)i, and (ρ, e3) 7−→ (ρ, e5) is a subderivation.
Then Υ ` e1 requires Υ ` e3, Υ ` e4, and Υ ` τ : r;
∅; Γ ` e1 : τ ′ requires ∅; Γ ` e3 : τ ′′ for some τ ′′; C; % ` e1

requires C; % ` e3. By the induction hypothesis, Υ ` e5, so by
the consistency rules, Υ ` e2, as required.

• (Application right) In this case: e1 = (e3[τ] e4)i, e2 =
(e3[τ] e5)i, and (ρ, e3) 7−→ (ρ, e5) is a subderivation. Then
Υ ` e1 requires Υ ` e3, Υ ` e4, and Υ ` τ : r; ∅; Γ ` e1 : τ ′

requires ∅; Γ ` e4 : τ ′′ for some τ ′′; C; % ` e1 requires
C; % ` e4. By the induction hypothesis, Υ ` e5, so by the
consistency rules, Υ ` e2, as required.

• (Application beta) In this case:

e1 = (v1
i[τ] v2

j)
k

v1 = 〈ρ′, fix f [α](x:τ1):τ2.e〉
e2 = ρ′′(e[τ/α])

k

ρ′′ = ρ′, f :τ ′ = v1
i, x:τ ′1 = v2

j

τ ′ = (∀α.τ1 → τ2)i

τ ′1 = τ1[τ/α]

By Υ ` e1 and the rules for consistency, Υ ` v1
i, Υ ` ρ′,

Υ ` e, Υ ` τ : r, and Υ ` v2
j . Thus by the rules for

consistency, Υ ` ρ′′. By the typing rule ∅ ` τ ′ wf , so τ ′

cannot be a type variable. Assumption C; % ` M requires
C; % ` e and, as in previous proofs, C(lbl(τ)) = C(%(i)). By
Lemma 26, Υ ` e[τ/α]. By the rules for consistency, Υ ` e2,
as required.

• (Under box) Similar to application left.
• (Under unbox) Similar to appliction left.

• (Unbox beta) In this case: e1 = (unbox 〈vi:τ〉j)
k

and e2 = vi.
Then Υ ` e1 requires Υ ` vi, as required.

• (Under frame) Similar to application left.

19 2012/3/11

• (Frame return) In this case: e1 = ρ′(vi)
j and e2 = vi. Then

Υ ` e1 requires Υ ` vi, as required.

With these lemmas we can prove our semantics preservation
result.

Theorem 5 (Coherence)
• If ` M : τ , C; % ` M , C ` Υ, Υ ` M , and M 7−→∗ (ρ, vi)

then �M�Υ 7−→∗ (�ρ�Υ, �v
i�Υ).

• If ` M : τ , C; % ` M , C ` Υ, Υ ` M , and M 7−→ · · · then
�M�Υ 7−→ · · · .

Proof:
• By induction on reduction derivations, using Theorem 4.

1. If M 7−→∗ (ρ, vi) in zero steps, then the result follows
immediately.

2. If M 7−→∗ (ρ, vi) in n steps, then by definition, M 7−→
M ′ and M ′ 7−→∗ (ρ, vi) in n− 1 steps.

By Theorem 4
�M�Υ 7−→ �M ′�Υ

By Theorem 2
`M ′ : τ ′

By Lemma 15
C; % `M ′

By Lemma 27
Υ `M ′

By induction
�M ′�Υ 7−→∗ (�ρ�Υ, �v

i�Υ)

By the defininition of many step reduction
�M�Υ 7−→∗ (�ρ�Υ, �v

i�Υ)

• In the operational semantics, there are six leaf reductions. Two
of them take expression forms to value forms, but otherwise
leave the term unchanged. One of the them takes unbox of box
of a value to that value. One of them takes a frame of a value
to that value. Thus if we measure a term by adding its size,
number of lambda expressions, and number of box expressions,
then this metric strictly decreases for these three leaf reductions.
Therefore, in any infinite reduction sequence, there must be
an infinite number of steps whose leaf reduction is a variable
reduction or an application beta reduction. Then observe in the
proof of Theorem 4 that the unboxing of a variable redex or
of an application beta redex will always take a step, and that
Lemma 25 preserves this. Thus the unboxing will also take an
infinite number of steps.

Theorem 5 shows that if a program reduces to a value then its
unboxing reduces to the unboxed value given that the analysis is
acceptable and the unboxing is consistent; and that if a program di-
verges then its unboxing diverges. In other words, for an acceptable
analysis and a consistent unboxing, the induced unboxing function
preserves the semantics of the original program up to elimination
of boxes on final values.

5. Construction of an acceptable unboxing
The previous section gives a declarative specification for when
an unboxing set Υ is correct but does not specify how such a
set might be chosen. In this section we give a simple algorithm
for constructing an unboxing given an arbitrary acceptable flow
analysis, and show that the unboxing produced by this algorithm
is consistent, and hence correct.

The idea behind the algorithm is that we use the results of a flow
analysis to construct the connected components of the interproce-
dural flow graph of a program. All of the elements of a connected
component will then either be unboxed together, or not unboxed at
all. Any such choice of unboxing (as we will show) satisfies the
cache coherence property. The only remaining requirement is that
the choice of unboxing set be consistent, which is easily satisfied by
ensuring that any connected component that includes a type passed
to a polymorphic function is only unboxed if the unboxing of the
type argument still has traceability r.

For the purposes of this section we ignore environments and the
intermediate forms ρ(e), 〈ρ, fix f [α](x:τ1):τ2.e〉j and 〈vi:t〉j .
These constructs are present in the language solely as mechanisms
to discuss the operational semantics—they can be thought of as
intermediate terms, rather than source terms. It is straightforward
to incorporate these into the algorithm if desired.

Given a flow analysis (C, %) and program e such that C; ρ ` e,
we define the induced undirected flow graph FG as an undirected
graph with a node for every label in C. For every label i and every
shape s ∈ C(i), we add an edge to FG between i and lbl(s).
Informally, these edges simply connect up each program point with
all of its reaching definitions.

Given a flow graph FG, we can find the connected components
in the usual way. Let CC be a mapping that maps labels to the con-
nected component in which they occur. Note that by definition each
label occurs in exactly one connected component. It is easy to show
that any connected component is cache consistent, and therefore
that any set consisting of a union of connected components of the
induced flow graph is cache consistent.

Lemma 28 (Cache consistency of a connected component)
Given any acceptable analysis (C, %) with induced flow graph FG,
and any connected component S of FG, S is cache consistent: that
is, C ` S.

Proof: To show that C ` S we must show that ∀i, s : s ∈
C(i) =⇒ i

S' lbl(s). But note that by the construction of
the induced flow graph FG, whenever s ∈ C(i) there is an edge
between i and lbl(s), and consequently by definition of a connected
component, i and lbl(s) must be in the same connected component.
Since every label occurs in exactly one connected component,
either both i and lbl(s) are in S or both are not in S. By definition

then, i
S' lbl(s).

Lemma 29 (Cache consistency (unary) closure)
Given any acceptable analysis (C, %) and disjoint label sets S1 and
S2, then if C ` S1 and C ` S2 then C ` S1 ∪ S2

Proof: To show that C ` S1 ∪ S2 we must show that ∀i, s : s ∈
C(i) =⇒ i

S1∪S2' lbl(s). Consider an abitrary label i. If i is
not in S1 ∪ S2, then we have that i is not in S1 and not in S2, and
hence by assumption, lbl(s) is not in S1 and not in S2, and hence
we have agreement. If i is in S1∪S2, then it must be in either S1 or

S2. WLOG, assume that i ∈ S1. By assumption, i
S1' lbl(s), and so

lbl(s) ∈ S1, and hence lbl(s) ∈ S1 ∪ S2 and we have agreement.

Lemma 30 (Cache consistency closure)
Given any acceptable analysis (C, %) with induced flow graph FG,
and any set SS of connected components of FG,

⋃
SS is cache

consistent.

Proof: By Lemma 28, each connected component is cache consis-
tent. By definition, any two connected components are disjoint, and

20 2012/3/11

so by Lemma 29 the union of any two connected components are
cache consistent, and are disjoint from any other connected compo-
nent. The cache consistency of

⋃
SS follows directly by induction.

5.1 The algorithm
Given the set of connected components for the induced flow graph,
the algorithm begins with an initial unboxing set Υ consisting of
the union of all of the connected components. By Lemma 30, we
have that C ` Υ. The algorithm then proceeds by considering in
turn each application sub-term e1[τ]e2 as follows:

- For each sub-term of e of the form e1[τ]e2:

- if lbl(τ) ∈ Υ, and if Υ ` τ : b, then:

- Υ← Υ− CC(lbl(τ)).

That is, for any application for which the current unboxing results
in the type argument being unboxed to a non-reference type, we
remove the connected component for the type from the unboxing
set. Note that after removing a connected component from Υ, the
new unboxing set Υ is still cache consistent since it is still a union
of connected components.

With the help of some technical lemmas, it is straightforward
to show that the final unboxing set Υ computed by the algorithm
is a consistent unboxing for the program, and hence that by con-
struction the specification defined in Section 4 is a useful one in the
sense that it is satisfiable.

To begin with, we observe that if a type’s label is not in the un-
boxing set Υ, then it is consistent and its traceability is unchanged
by the unboxing.

Lemma 31 (Type consistency)
For any unboxing set Υ and type τ , if lbl(τ) /∈ Υ then Υ ` τ :
tr(τ).

Proof: By inspection.

• (Variable) tr(αi) = r, and Υ ` αi : r.

• (Base type) tr(Bi) = b, and Υ ` B
i : b.

• (Fun type) tr(∀α.τ1 → τ2
i) = r, and Υ ` ∀α.τ1 → τ2

i : r.

• (Box type) tr(box(τ ′)
i
) = r, and by assumption i /∈ Υ, so we

have that Υ ` box(τ ′)
i

: r.

It is also the case that the consistent type judgement defines a
total function on types, and hence for any type we either have that
it is consistent at traceability r or that it is consistent at traceability
b.

Lemma 32 (Type consistency is a total function)
For any unboxing set Υ and type τ , either Υ ` τ : b, or Υ ` τ : r.

Proof: By induction on types. All of the cases follow immediately
except when τ = box(τ ′)

i and i ∈ Υ. In that case, by induction we
have that either Υ ` τ ′ : b, or Υ ` τ ′ : r, and so by construction
either Υ ` τ : b, or Υ ` τ : r.

Theorem 6
If ∆; Γ ` e : τ , C; % ` Γ, and C; % ` e and if Υ is the unboxing
set computed by the algorithm in this section, then Υ is a consistent
unboxing for e. That is, C ` Υ and Υ ` e.

Proof: The conclusion that C ` Υ follows almost immediately
from Lemma 30. The initial choice of Υ is a union of connected
components, and hence is cache consistent. At every step of the al-
gorithm, we may remove a single connected component from Υ.

The result is still a union of connected components (since con-
nected components are disjoint), and hence the result of removing
a connected component is still cache consistent by Lemma 30.

The conclusion that Υ ` e follows by induction on the structure
of the typing derivation.

• (Variable) In this case, e = xi, consistency is immediate.

• (Fix) In this case e = (fix f [α](x:τ1):τ2.e
′)
i. To get con-

sistency, we must show that Υ ` e′. The last rule applied in
the typing judgement must have been the fix rule, and by its
premises we have that ∆ ` ∀α.τ1 → τ2

i wf (1), and that
∆, α; Γ, f :∀α.τ1 → τ2

i, x:τ1 ` e′ : τ2 (2). The last rule ap-
plied in the acceptable analysis judgement must also have been
the fix rule, and by its premises we have that C; % ` e′ (3).
To apply the induction hypothesis, we need (1), (3), and that
C; % ` Γ, f :∀α.τ1 → τ2

i, x:τ1 (4). To show (4), it is sufficient
to show that:

%(f) = i which is a premise of the acceptable analysis
derivation

C; % ` ∀α.τ1 → τ2
i which is a premise of the acceptable

analysis derivation

%(x) = lbl(τ1) which is a premise of the acceptable analy-
sis derivation

C; % ` τ1 which is a sub-premise of the derivation of
C; % ` ∀α.τ1 → τ2

i.

So by (1), (3), and (4), we have by induction that Υ ` e′.
• (Application) In this case e = (e1[τ]e2)i. To prove consistency,

we need that Υ ` e1 (1), Υ ` e2 (2), and Υ ` τ : r
(3). Inverting the typing derivation and the acceptable analysis
derivation immediately gives us the premises we need to apply
the induction hypothesis to get (1) and (2). To prove (3), note
that a premise of the typing derivation gives us that tr(τ) = r
(4). If lbl(τ) /∈ Υ, then by Lemma 31 we have that Υ ` τ :
tr(τ) and so by (4) we’re done. If lbl(τ) ∈ Υ, then by the
definition of the algorithm, we must have that Υ ` τ : b does
not hold (since otherwise the algorithm would have removed
the connected component containing lbl(τ) from Υ), and so by
Lemma 32 we must have that Υ ` τ : r and we’re done.

• (Box) All of the premises need to apply the induction hypothe-
sis are available immediately by inverting the typing derivation
and the acceptable analysis derivation.

• (Unbox) All of the premises need to apply the induction hypoth-
esis are available immediately by inverting the typing derivation
and the acceptable analysis derivation.

• (Constant) Follows immediately.

6. Open Terms
Up to this point the framework we have developed has implicitly
been restricted to whole-program optimization in the sense that it
is built around closed terms. In practice, it is important to be able to
optimize program fragments (modules) where we have a part of the
program that may refer to other pieces not available for analysis,
and may in turn export itself for use by other program fragments.
Since we do not wish to assume anything about the compilation
of the code to which a fragment is linked, such a setting adds the
additional correctness criterion that since we do not have access to
the rest of the program, anything that flows across the boundary
to or from the rest of the program must retain its original boxed
representation. Informally, we can easily ensure this by simply

21 2012/3/11

` (Γ⇒ e : τ) wf

∅ ` Γ wf ∅; Γ ` e : τ

` (Γ⇒ e : τ) wf

C; % ` (Γ⇒ e : τ)

C; % `s Γ C; % `s e C; % `s τ

C; % ` (Γ⇒ e : τ)

�(Γ⇒ e : τ)�Υ

�(Γ⇒ e : τ)�Υ = (Γ⇒ �e�Υ : τ)

Υ ` τ not unboxed

i /∈ Υ

Υ ` αi not unboxed

i /∈ Υ

Υ ` B
i not unboxed

i /∈ Υ Υ ` τ1 not unboxed Υ ` τ2 not unboxed

Υ ` (∀α.τ1 → τ2)i not unboxed

i /∈ Υ Υ ` τ not unboxed

Υ ` box(τ)i not unboxed

Υ ` Γ not unboxed

∀1 ≤ j ≤ n : Υ ` τj not unboxed

Υ ` x1:τ1, . . . , xn:τn not unboxed

Υ ` (Γ⇒ e : τ)

Υ ` Γ not unboxed Υ ` e Υ ` τ not unboxed

Υ ` (Γ⇒ e : τ)

Figure 10. Judgements for modules

C; % `s τ

C(%(α)) = C(i) s ∈ C(i)

C; % `s αi

C; % `s e

C; % `s box(τ)i C; % `s e (boxtr(τ) lbl(e))i
v
∈ C(i)

C; % `s (boxτ e)
i

C; % `s box(τ)i C; % `s vj (boxtr(τ) j)
i

v
∈ C(i)

C; % `s 〈vj :τ〉i

Figure 11. Stronger Analysis

requiring that nothing on the boundary is in the unboxing set. In
this section we make this requirement precise, define a notion of
unboxing for program modules, and prove this extended unboxing
correct.

For the purposes of this section, a program fragment is a mod-
ule of the form (Γ ⇒ e : τ). Here Γ specifies the imports of the
module, e specifies the body of the module, and τ gives the type
of the body. The module is considered to export only one thing—
the value that e evaluates to; generalization to multiple exports is
straightforward. As discussed above, the requirements of indepen-
dent compilation forbid us from unboxing any of the imports and
the exported value. In this typed setting, this can be achieved di-
rectly by forbidding the unboxing of any part of any type in Γ and
in τ . Since the types determine the representation of the values that
inhabit them, this is sufficient to ensure that values that flow across
module boundaries are not unboxed.

To make this precise, we extend the definitions of well typed-
ness, acceptability of flow analysis, unboxing, and consistency of
unboxing to modules in Figure 10. For technical reasons, we must
very slightly strengthen the definition of acceptability for flow anal-
yses. Specifically, the rules for type variables, box expressions, and
box values are replaced with those in Figure 11 while leaving all
other rules the same. The new rules for boxes require a more pre-
cise shape in the cache in which the labels for the contents of the
box match directly. It is likely that any actual flow analysis would
use such a shape, and so we do not believe that this requirement is
an undue burden. These stronger module rules are not closed under
reduction, and hence the rules for programs must be weaker. The
stronger condition for type variables is a technical requirement to
ensure consistency even in the case that the caches for the type vari-
ables would be otherwise uninhabited. It is easy to arrange it such
that caches for type variables are always non-empty, and hence to
trivially satisfy this requirement.

A suitable notion of correctness for modular unboxing is that a
module and its unboxing are contextually equivalent. Rather than
define contextual equivalence directly, we use a notion that is usu-
ally proven equivalent to contextual equivalence as our definition.
Specifically, we say that two expressions are contextually equiva-
lent if in any environment that closes them and in any elimination
context for their type, they are observably equivalent. The formal
definition is given in Figure 12.

The strategy is that we will take the context and alpha vary it and
relabel it so that it is sufficiently distinct from the module. Then we
will argue that we can modify the flow analysis and unboxing to
cover the context without unboxing any of it. Then by coherence
the module in context will behave the same as the unboxing of the
module in context, which because the context is not unboxed, will
act the same as the unboxed module in context.

First we formalize and prove that the operational semantics is
insensitive to the alpha variant and labels used. Let x ∼s y mean
that x and y are alpha variants and possibly relabeled.

Lemma 33
If M1 ∼s M2 and M1 7−→ M3 then there exists M4 such that
M3 ∼s M4 and M2 7−→M4.

Proof: The proof is by a straight forward induction on the deriva-
tion of M1 7−→M3.

Next we prove three lemmas about unboxing preservation. In
the first two we show that something’s unboxing is that something
because either the not unboxed judgement (the first lemma) or the
labels in the something are not in the unboxing set (the second
lemma). In the third we show the unboxing of an expression is the
same if the unboxing set is the same on the labels in the expression.
To state and prove these and subsequent lemmas we need a function

22 2012/3/11

E ::= 〈〉 | (E[τ] e)i | (unboxE)i

Γ ` 〈〉 : τ〈τ〉

Γ ` E : (∀α.τ1 → τ2)j〈τ〉 ∅ ` τ wf tr(τ) = r ∅; Γ ` e : τ ′1 ` τ1[τ/α] = τ ′1

Γ ` (E[τ] e)i : τ2[τ/α]〈τ〉

Γ ` E : box(τ ′)
j〈τ〉

Γ ` (unboxE)i : τ ′〈τ〉

M1
obs≡ M2

def
= (∀c, i : (M1 7−→∗ ci ⇔M2 7−→∗ ci)) ∧ (M1 7−→ · · · ⇔M2 7−→ · · ·)

Γ ` e1 ≡ e2 : τ
def
= ∅; Γ ` e1 : τ ∧ ∅; Γ ` e2 : τ ∧

∀ρ,E : ` ρ : Γ ∧ Γ ` E : Bi〈τ〉 =⇒ (ρ,E〈e1〉)
obs≡ (ρ,E〈e2〉)

` (Γ1 ⇒ e1 : τ1) ≡ (Γ2 ⇒ e2 : τ2)
def
= Γ1 = Γ2 ∧ τ1 = τ2 ∧ (Γ1 ` e1 ≡ e2 : τ1)

Figure 12. Contextual Equivalence

lbls(σi) = {i} ∪ lbls(σ)
lbls(α) = ∅
lbls(B) = ∅
lbls(∀α.τ1 → τ2) = lbls(τ1) ∪ lbls(τ2)
lbls(box(τ)) = lbls(τ)
lbls(mi) = {i} ∪ lbls(m)
lbls(vi) = {i} ∪ lbls(v)
lbls(x) = ∅
lbls(fix f [α](x:τ1):τ2.e) = lbls(τ1) ∪ lbls(τ2) ∪ lbls(e)
lbls(e1[τ] e2) = lbls(e1) ∪ lbls(τ) ∪ lbls(e2)
lbls(boxτ e) = lbls(τ) ∪ lbls(e)
lbls(unbox e) = lbls(e)
lbls(ρ(e)) = lbls(ρ) ∪ lbls(e)
lbls(c) = ∅
lbls(〈ρ, fix f [α](x:τ1):τ2.e〉) = lbls(ρ) ∪ lbls(τ1) ∪ lbls(τ2) ∪ lbls(e)
lbls(〈vi:τ〉) = lbls(τ) ∪ lbls(vi)
lbls(x1:τ1 = v1

i1 , . . . , xn:τn = vn
in) = ∪1≤i≤nlbls(τj) ∪ lbls(vj

ij)

Figure 13. The labels in an type, expression, or environment

to return all the labels in an expressions, type, or environment. It is
defined in Figure 13.

Lemma 34
• If Υ ` τ not unboxed then �τ�Υ = τ .
• If Υ ` Γ not unboxed then �Γ�Υ = Γ.

Proof:
• The proof is by induction on the structure of τ . Consider the

cases:

Case 1, τ = αi: Then by definition �τ�Υ = τ , as required.

Case 2, τ = B
i: Then by definition �τ�Υ = τ , as required.

Case 3, τ = (∀α.τ1 → τ2)i: Then Υ ` τ not unboxed
requires Υ ` τ1 not unboxed and Υ ` τ2 not unboxed .
By the induction hypothesis, �τ1�Υ = τ1 and �τ2�Υ = τ2.
By definition, �τ�Υ = τ , as required.

Case 4, τ = box(τ ′)
i: Then Υ ` τ not unboxed requires

i /∈ Υ and Υ ` τ ′ not unboxed . By the induction hypoth-
esis, �τ ′�Υ = τ ′. By definition, �τ�Υ = τ , as required.

• If Γ = x1:τ1, . . . , xn:τn then: Υ ` Γ not unboxed requires
Υ ` τj not unboxed for 1 ≤ j ≤ n. So by the first item,
�τj�Υ = τj for 1 ≤ j ≤ n. Then by definition, �Γ�Υ = Γ, as
required.

Lemma 35
• If lbls(ρ) ∩Υ = ∅ then �ρ�Υ = ρ.
• If lbls(E) ∩Υ = ∅ then �E�Υ = E.

Proof: The proof is a straight forward induction on the structure
of ρ and E.

Lemma 36
If Υ1 ∩ lbls(e) = Υ2 ∩ lbls(e) then �e�Υ1

= �e�Υ2
.

Proof: The proof is a staight forward induction on the structure of
e.

Next we state and prove our main technical lemma. This lemma
states that we can rewrite the context and flow analysis to have
certain desirable properties, namely that the flow analysis covers
the context and the module, that the context is not unboxed, that
the module is unboxed as before, and the unboxing set and flow
analysis remain consistent and consistent with the module and
context.

23 2012/3/11

Lemma 37
If:

∅ ` Γ wf
∅; Γ ` e : τ
C; % ` Γ
C; % ` e
C; % ` τ
C ` Υ
Υ ` Γ not unboxed
Υ ` e
Υ ` τ not unboxed
` ρ : Γ
Γ ` E : Bi〈τ〉

then there exists ρ′, E′, C′, %′, and Υ′ such that:

ρ ∼s ρ
′

E ∼s E
′

` ρ′ : Γ
Γ ` E′ : Bj〈τ〉
C′; %′ ` (ρ′, E′〈e〉)
C′ ` Υ′

Υ′ ` (ρ′, E′〈e〉)
lbls(ρ′) ∩Υ′ = ∅
lbls(E′) ∩Υ′ = ∅
Υ ∩ lbls(e) = Υ′ ∩ lbls(e)

Proof: Let V be the set of variables that occur in e. Let A be the
set of type variables that occur in Γ, e, or τ . Both these sets are
finite.

The derivation of C; % ` Γ, C; % ` e, and C; % ` τ will for each
type that is not a type variable require a particular type shape with
some label on it in the cache of the label of that type, similarly for
each box expression and box value require a box shape with some
label of its contents in the cache. Let L be one such label for each
such type and such box as well as %(V)∪%(A)∪lbls(Γ)∪lbls(e)∪
lbls(τ). Note that L is a finite set.

Let %′ be % on V and A and on every other variable or type
variable let it map to a fresh label (distinct from each other and
from L). Define:

C′′(i) =

{
{s | s ∈ C(i) ∧ lbls(s) ⊆ L} i ∈ L
∅ i /∈ L

Claim: C′′; %′ ` Γ, C′′; %′ ` e, and C′′; %′ ` τ . The proof is by
induction on the derivation, consider the last rule used:

• (Variable) In this case e = xi and C(%(x)) ⊆ C(%(x)).
Since x ∈ V , %′(x) = %(x) and %(x) ∈ L. Also i ∈ L.
Therefore, C′′(%′(x)) ⊆ C′′(i), as required. Thus by the same
rule, C′′; %′ ` e, as required.

• (Fix expression) In this case e = (fix f [α](x:τ1):τ2.e
′)
i,

%(f) = i, %(x) = lbl(τ1), C; % ` (∀α.τ1 → τ2)i, C; % ` e′,
and (∀%(α).lbl(τ1)→ lbl(e′))

∈
v C(i). Since f, x ∈ V and α ∈

A, %′(f) = %(f), %′(x) = %(x), %′(α) = %(α), and %(α) ∈ L.
By the induction hypothesis, C′′; %′ ` (∀α.τ1 → τ2)i and
C′′; %′ ` e′. Since %′(α) ∈ L, lbl(τ1) ∈ L, lbl(e) ∈ L, and
i ∈ L, (∀%′(α).lbl(τ1)→ lbl(e′))

∈
v C′′(i). Thus by the same

rule, C′′; %′ ` e, as required.

• (Application) In this case e = (e1[τ] e2)i, C; % ` e1, C; % `
τ , C; % ` e2, and fun(C; lbl(e1), lbl(τ), lbl(e2), i). By the
induction hypothesis, C′; %′ ` e1, C′; %′ ` τ , and C′; %′ ` e2.
Since lbl(e1) ∈ L, lbl(τ) ∈ L, lbl(e2) ∈ L, and i ∈ L, it
is easy to see that fun(C; lbl(e1), lbl(τ), lbl(e2), i) (for C′′).
Thus by the same rule, C′′; %′ ` e, as required.

• Other cases are similar . . .

Let A′ be the set of type variables that appear in Γ and τ . We
construct ρ′ and E′ as alpha variants and relabelings of ρ and E
as follows. Since ` ρ : Γ, ρ contains Γ, so we keep that part
the same. Type variables that are in A′ we keep the same. All
other type variables and variables we pick an alpha variant that is
fresh (distinct from each other and from A respectively V). The
outermost label on types on variables we relabel to the binding label
for that variable. All other labels we relabel to be fresh. Clearly
ρ ∼s ρ

′ and E ∼s E
′.

Claim: ` ρ′ : Γ and Γ ` E′ : Bj〈τ〉 for some j. The proof is a
straight forward induction on the structure of ρ′ and E′.

Now we need to build a C′ such that C′; %′ ` (ρ′, E′〈e〉). We
start from C′′. First we add into the caches, shapes required directly
for the rules for C′; %′ ` ρ′ and C′; %′ ` E′ (such things are already
there for e). In the case of types we add shapes using the label of
the type as the label of the shape. In the case of box expressions
and values we use the label of the contents of the box as the label
of the contents of the shape. What remains is a bunch of subset and
equalty constraints between cache entries, so we pick C′ to be the
smallest larger cache that satisfies these constraints. Clearly such a
C′ exists and by construction, C′; %′ ` (ρ′, E′〈e〉).

Set Υ′ = Υ ∩ L. Clearly, Υ ∩ lbls(e) = Υ′ ∩ lbls(e) as
lbls(e) ⊆ L. By construction, the labels of ρ′ and E′ are in the
labels of Γ or τ or are not in L. Since Υ ` Γ not unboxed and
Υ ` τ not unboxed , the labels of Γ and τ are not in Υ. Therefore,
lbls(Γ) ∩ Υ′ = ∅ and lbls(τ) ∩ Υ′ = ∅. In fact, if A′′ is a set of
type variables in ρ′ and E′ then %′(A′′) ∩Υ′ = ∅ too.

Claim: any flow from the interface to a box (C; i, j) con-
dition has a box type at the interface (**), and similarly for
fun(C; i, j, k, l). The proof is by induction on the flow conditions
noting that in all cases the two end points have the same type.

Claim: C′ ` Υ′. Let s and i be such that s ∈ C′(i). If s ∈ C′′(i)
then s ∈ C(i), i ∈ L, and lbls(s) ⊆ L, and in particular,

lbl(s) ∈ L. Since C ` Υ, i
Υ' lbl(s). Since Υ′ = Υ ∩ L,

i ∈ L, and lbl(s) ∈ L, i
Υ′

' lbl(s), as required. Otherwise, we
claim that i, lbl(s) /∈ Υ′. Let LC = lbls(ρ′) ∪ lbls(E′) ∪ %′(A′′),
LI = lbls(Γ) ∪ lbls(τ), LM = L − LC , and LA = LC ∪ L.
First notice that C′′ has entries only for labels in L and with shapes
whose labels are in L. The first part of computing C′ added shapes
to cache entries for labels in LC with shapes whose labels are in
LC . The second part of computing C′ only propagates existing
shapes from one cache entry to another, and only from/to cache
entries in LA or in labels in shapes in the cache entries. Thus,
the cache entries of C′ are only for LA with shapes with labels
in LA. If lbl(s) ∈ LC then by previous argument lbl(s) /∈ Υ′, as
required. If lbl(s) ∈ LM then we will show that s ∈ C′′(j) for
some j ∈ LI . Then s ∈ C(j), and since C ` Υ and j /∈ Υ,
lbl(s) /∈ Υ so lbl(s) /∈ Υ′, as required. If i ∈ LC then by
previous argument i /∈ Υ′, as required. If i ∈ LM then we will
show that C′′(j) ⊆ C′′(i) for some j ∈ LI . Then since C′′(j)
is inhabited because it labels a type checked in C′′; %′ ` Γ or
C′′; %′ ` τ , and since that required type shape has labels in L,
∅ 6= C(j) ⊆ C(i). Then since C ` Υ and j /∈ Υ, i /∈ Υ, so
i /∈ Υ′, as required. It remains to show the two conditions we
claimed. Since C′ was computed using a least fixed point, we prove
these claims by induction on when s was added to C′(i). Consider
the cases:

• Case 1, s was added to i because s ∈ C′(j), s /∈ C′(i),
and C′(j) ⊆ C(i) is required by the rules for variables, box
expressions, frames, box values, or environments. In this case, i
and j have to come from the same term, that is, either i, j ∈ LC
or i, j ∈ L. If lbl(s) ∈ LM then s must have been added to
C(j) previously in the second phase of constructing C′, so by
the induction hypothesis, lbl(s) ∈ C′′(k) for some k ∈ LI .

24 2012/3/11

If i ∈ LM then j ∈ L. First note that the condition on j
and i is also required to show that C′′; %′ ` Γ, C′′; %′ ` e,
or C′′; %′ ` τ , so C′′(j) ⊆ C′′(i). If j ∈ LI then we have
what we need. Otherwise j ∈ LM , so s was added to C′(j)
previously in the second phase of constructing C′(j), so by the
induction hypothesis, C′′(k) ⊆ C′′(j) for some k ∈ LI . Then
C′′(k) ⊆ C′′(i), as required.

• Case 2, s was added to i because C(%′(α)) = C(i), required
by the rule for type variables, did not hold and s ∈ C(%′(α)).
Similar to Case 1.

• Case 3, s was added to i because box (C; j, i) is required, either
(boxt i

′)
j′

v ∈ C′(j) or (box i′)
j′

t ∈ C′(j), and s was already
in C(i′). In this case, i and j have to come from the same term,
that is, either i, j ∈ LC or i, j ∈ L. Note that the labels in
any shape under consideration come from the same term, that
is, either they are all in L or they are all in LC .

If lbl(s) ∈ LM then:

− If s was added to C′(i′) previously in the second phase
of constructing C′ then by the induction hypothesis,
s ∈ C′′(k) for some k ∈ LI .

− Otherwise s ∈ C′′(i′) and i′, j′ ∈ L. Since s was not
already in C′(i) then the box shape was added to C′(j)
previously in the second phase of constructing C′, so
by the induction hypothesis, the box shape is in C′′(k)
for some k ∈ LI . By (**), k labels a box type. By the
rules for acceptability, box (C; k, k′) for C′′ for some
k′ ∈ LI . Thus, C′′(i′) ⊆ C′′(k′). Thus s ∈ C′′(k′), as
required.

If i ∈ LM then j ∈ L and box (C; j, i) holds for C′′.

− If the box shape was added to C′(j) previously in the
second phase of the constructing C′ then by the induc-
tion hypothesis, C′′(k) ⊆ C′′(j) for some k ∈ LI .
By (**), k labels a box type. Then by the rules for ac-
ceptability, (box i′′)

j′′

t ∈ C′′(k) for some i′′ ∈ LI ,
so (box i′′)

j′′

t ∈ C′′(j). By box (C; j, i), C′′(i′′) ⊆
C′′(i), as required.

− Otherwise, the box shape was in C′′(j) and i′, j′ ∈ L.
By box (C; j, i), C′′(i′) ⊆ C′′(i). Since s was not
already in C′(i) then it was previously added to C′(i′) in
the second phase of constructing C′, so by the induction
hypothesis, C′′(k) ⊆ C′′(i′) for some k ∈ LI . Then by
transitivity C′′(k) ⊆ C′′(i), as required.

• Case 4, swas added because a fun(C; j1, j2, j3, j4) is required.
Similar to Case 3.

Claim: Υ′ ` (ρ′, E′〈e〉). The proof is by a straight forward
induction on the structure of (ρ′, E′〈e〉). The only interesting case
is application. In that case, we have (e1[τ] e2)i. By the induction
hypothesis we get Υ′ ` e1 and Υ′ ` e2. We just need to show that
Υ′ ` τ : r. If the application came from e then since the labels
of τ are in L, the result follows from Υ ` τ : r, which holds by
assumption (Υ ` e). Otherwise, the labels of τ are not in Υ′ so
clearly Υ′ ` τ tr(τ). Then tr(τ) = r holds by the typing rules.

With these definitions we can prove that unboxing for modules
is correct via the following theorem.

Theorem 7
If ` (Γ ⇒ e : τ) wf , C; % ` (Γ ⇒ e : τ), C ` Υ, and
Υ ` (Γ⇒ e : τ) then ` (Γ⇒ e : τ) ≡ �(Γ⇒ e : τ)�Υ.

Proof: By definition, �(Γ⇒ e : τ)�Υ = (Γ⇒ �e�Υ : τ). Clearly
Γ = Γ and τ = τ , so it remains to show that Γ ` e ≡ �e�Υ : τ .
By ` (Γ ⇒ e : τ) wf , ∅ ` Γ wf and Γ ` e : τ . By
C; % ` (Γ ⇒ e : τ), C; % ` Γ, C; % ` e, and C; % ` τ .
By Υ ` (Γ ⇒ e : τ), Υ ` Γ not unboxed , Υ ` e, and
Υ ` τ not unboxed . By Theorem 2, �Γ�Υ ` �e�Υ : �τ�Υ. By
Lemma 34, Γ ` �e�Υ : τ . Let ρ and E be such that ` ρ : Γ and
Γ ` E : Bi〈τ〉. Then by Lemma 37, there exists ρ′, E′, C′, %′, and
Υ′ such that:

ρ ∼s ρ
′

E ∼s E
′

` ρ′ : Γ

Γ ` E′ : Bi
′
〈τ〉

C′; %′ ` (ρ′, E′〈e〉)
C′ ` Υ′

Υ′ ` (ρ′, E′〈e〉)
lbls(ρ′) ∩Υ′ = ∅
lbls(E′) ∩Υ′ = ∅
Υ ∩ lbls(e) = Υ′ ∩ lbls(e)

Since the operational semantics is deterministic, we just need to
show that (ρ,E〈�e�Υ〉) matches (ρ,E〈e〉) in behaviour. There are
two cases:

• If (ρ,E〈e〉) 7−→∗ (ρ, cj) then by Lemma 33, (ρ′, E′〈e〉) 7−→∗

(ρ′, cj
′
) for some j′. By Theorem 5, �(ρ′, E′〈e〉)�Υ′ 7−→∗

�(ρ′, cj
′
)�Υ′ . By both Lemma 35 and definition of unbox-

ing, (ρ′, E′〈�e�Υ′〉) 7−→∗ (ρ′, cj
′
). Hence by Lemma 36,

(ρ′, E′〈�e�Υ〉) 7−→∗ (ρ′, cj
′
). Therefore by Lemma 33 again,

(ρ,E〈�e�Υ〉) 7−→∗ (ρ′, cj
′′

), for some j′′. It is not too hard to
see that j = j′′, as required.

• If (ρ,E〈e〉) 7−→ · · · then by Lemma 33, (ρ′, E′〈e〉) 7−→
· · · . By Theorem 5, �(ρ′, E′〈e〉)�Υ′ 7−→ · · · . By Lemma 35,
(ρ′, E′〈�e�Υ′〉) 7−→ · · · . By Lemma 36, (ρ′, E′〈�e�Υ〉) 7−→
· · · . By Lemma 33, (ρ,E〈�e�Υ〉) 7−→ · · · , as required.

7. Related work
This paper provides a modular approach to showing correctness
of a realistic compiler optimization that rewrites the structure of
program data structures in significant ways. We show how to use
an arbitrary interprocedural reaching definitions analysis to elim-
inate unnecessary heap allocation in type-preserving fashion. Our
optimization can be staged freely with other optimizations. Unlike
any previous work that we are aware of, we account for correctness
with respect to the meta-data requirements of the garbage collector,
and we believe that additional issues such as different value sizes,
dynamic type tests, etc. are straightforward to incorporate.

There has been substantial previous work addressing the prob-
lem of unboxing in general, and typed compilation specifically.
Peyton Jones [3] introduced an explicit distinction between boxed
and unboxed objects to allow a high-level compiler to locally elimi-
nate boxing. Henglein and Jørgensen [2] defined a formal notion of
optimality for local unboxings, albeit one that does not correspond
to reduced allocation or reduced instruction count.

Leroy [4] defined a type-driven approach to adding coercions
into and out of specialized representations. The type driven trans-
lation represents monomorphic objects natively (unboxed, in our
terminology), and then introduces wrappers to coerce polymorphic
uses into an appropriate form. To a first-order approximation, in-
stead of boxing at definition sites this approach boxes objects at
polymorphic use sites. This style of approach has the problem that
it is not necessarily beneficial, since allocation is introduced in

25 2012/3/11

places where it would not otherwise be present. This is reflected
in the slowdowns observed on some benchmarks described in the
original paper. This approach also has the potential to introduce
space leaks. In a later paper [5] Leroy argued that a simple untyped
approach gives better and more predictable results.

The MLton compiler [11] largely avoids the issue of a uniform
object representation by completely monomorphizing programs be-
fore compilation. This approach requires whole-program compila-
tion. More limited monomorphization schemes could be considered
in an incremental compilation setting. Monomorphization does not
eliminate the need for boxing in the presence of dynamic type tests
or reflection. Just in time compilers (e.g. for .NET) may monomor-
phize dynamically at runtime.

The TIL compiler [1, 10] uses intensional type analysis in a
whole-program compiler to allow native data representations with-
out committing to whole-program compilation. As with the Leroy
coercion approach, polymorphic uses of objects require condition-
als and boxing coercions to be inserted at use sites, and conse-
quently there is the potential to slow down, rather than speed up,
the program. This approach can also be used by the garbage collec-
tor to relax the restriction that type variables range only over types
of a single traceability. This idea is complementary to our approach
in the sense that it merely relaxes some of the correctness restric-
tions placed on the unboxing by the underlying GC model.

Serrano and Feeley [9] described a flow analysis for perform-
ing unboxing similar in spirit to our approach, albeit in an untyped
setting. Their algorithm essentially attempts to find a monomorphic
typing for (parts of) a program in which object representations have
not been made explicit, which they then use selectively to choose
whether to use a uniform or non-uniform representation for each
particular object. They do not deal with type information and type
preserving compilation. They also assume a conservative garbage
collector and hence do not need to account for the requirements of
GC safety, and they do not prove a correctness result. The effec-
tiveness of their algorithm would seem to be incomparable in that
while they are not limited by the restrictions of GC and type safety,
their algorithm can only unbox objects used monomorphically – the
algorithm presented here can unbox objects used polymorphically
subject to the restriction that the unboxed type have the appropriate
traceability.

References
[1] R. Harper and G. Morrisett. Compiling polymorphism using inten-

sional type analysis. In Twenty-Second ACM Symposium on Princi-
ples of Programming Languages, pages 130–141, San Francisco, CA,
January 1995.

[2] F. Henglein and J. Jørgensen. Formally optimal boxing. In Proceed-
ings of the 21st ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’94, pages 213–226, New York, NY,
USA, 1994. ACM. ISBN 0-89791-636-0.

[3] S. L. P. Jones and J. Launchbury. Unboxed values as first class citizens
in a non-strict functional language. In Proceedings of the 5th ACM
conference on Functional programming languages and computer ar-
chitecture, pages 636–666. Springer-Verlag New York, Inc., 1991.

[4] X. Leroy. Unboxed objects and polymorphic typing. In Proceed-
ings of the 19th ACM SIGPLAN-SIGACT symposium on Principles of
programming languages, POPL ’92, pages 177–188, New York, NY,
USA, 1992. ACM. ISBN 0-89791-453-8.

[5] X. Leroy. The effectiveness of type-based unboxing. Technical report,
Boston College, Computer Science Department, 1997.

[6] G. Morrisett, D. Walker, K. Crary, and N. Glew. From system F to
typed assembly language. ACM Trans. Program. Lang. Syst., 21:527–
568, May 1999. ISSN 0164-0925.

[7] F. Nielson, H. R. Nielson, and C. Hankin. Principles of Program
Analysis. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1999.

ISBN 3540654100.
[8] L. Petersen and N. Glew. GC-safe interprocedural unboxing. In Pro-

ceedings of the 21st International Conference on Compiler Construc-
tion, CC 2012, 2012.

[9] M. Serrano and M. Feeley. Storage use analysis and its applications.
In Proceedings of the first ACM SIGPLAN international conference
on Functional programming, ICFP ’96, pages 50–61, New York, NY,
USA, 1996. ACM. ISBN 0-89791-770-7.

[10] D. Tarditi, G. Morrisett, P. Cheng, C. Stone, R. Harper, and P. Lee.
TIL: a type-directed, optimizing compiler for ML. SIGPLAN Not., 39
(4):554–567, April 2004. ISSN 0362-1340.

[11] S. Weeks. Whole-program compilation in MLton. In Proceedings of
the 2006 workshop on ML, ML ’06, pages 1–1, New York, NY, USA,
2006. ACM. ISBN 1-59593-483-9.

26 2012/3/11

