
Certifying compilation for Standard ML in a type analysis

framework.

(Thesis Summary)

Leaf Petersen

April 1, 2004

1 Types in compilation

It is an unfortunate fact about the state of programming that even good programs sometimes go
wrong. It is not uncommon for programs to crash or misbehave, whether accidentally, or with
malicious intent. This problem has been greatly compounded in recent years by the proliferation
of mobile code. More and more of the code that is run is downloaded in bits and pieces from
various sources. Examples of this include Java-script and Java(TM) programs downloaded into a
web browser, applications downloaded directly over the internet, and code run on behalf of others
(such as the SETI@HOME project, which uses donated spare processor cycles to further the search
for extra-terrestrial life). The proliferation of mobile code is expected only to increase as networked
technology becomes more a part of everyday life.

Unfortunately, it is particularly hard to trust the behavior of this sort of code. The code
producer may be unknown to the code consumer, or the identity of the producer may be spoofed.
Moreover, even trusted producers occasionally produce programs that go wrong.

It would certainly seem desirable to be able to rule out programs that are unsafe. Unfortunately,
determining the safety of arbitrary machine code is undecidable. A compromise solution that has
been in existence for several decades, is to restrict ourselves to programming in a language which
has the property that all programs are safe. The resulting compiled code is therefore safe by
construction, modulo the correctness of the compiler. Languages such as LISP, ML and Java all
have this property: that all programs written in these languages are guaranteed with some level of
certainty not to crash.

Unfortunately for the purposes of mobile code, the safety properties enjoyed by these languages
are only guaranteed at the source level: once the source code has been compiled to machine in-
structions, the safety guarantee lies only in the implicit property of being in the image of the safe
language under compilation. One solution to this is to ship around instead something tantamount
to source code, allowing the consumer to validate the code independently. This is in essence the
Java(TM) byte-code solution. This places much of the burden of compilation on the code consumer,
who must still in turn trust that their own compiler is correct.

The two most commonly used solutions then, are either to accept arbitrary machine code based
on trust in the producer of the code, or to accept only annotated high-level code and to trust the
local compiler. Both of these solutions leave much to be desired.

1



To better this, several systems have been proposed for annotating machine code in such a way
that correctness remains checkable. Along with the code, the code consumer receives a certificate
that can be used to check that that the code conforms to the correctness assertions that it claims.
The only software that the code consumer must still trust is the checker itself. Two notable
examples of this include Proof Carrying Code (PCC) from CMU [Nec98] and Typed Assembly
Language (TAL) from Cornell [MWCG98]. The PCC system provides for machine code to be
annotated with proofs of safety properties done in first-order logic. The code consumer simply
checks that the proofs are indeed correct – a relatively simple procedure. This system is very
general, in that it can be used to certify any property which can be expressed in the logic. TAL on
the other hand specializes to the particular property of type safety. TAL provides for a machine
code which is annotated with types, which can then be type checked by the code consumer.

A certifying compiler is one which produces, along with its normal output, a certificate which
can be used to check that the generated code is safe according to some policy. Certifying compilers
have been written translating safe subsets of C to both PCC and TAL [MCG+99, NL98]. More
ambitiously, a full scale Java(TM) compiler has been written targeting PCC [CLN+00].

The TILT (TIL Two) compiler is an optimizing compiler developed at CMU that implements
the full Standard ML ’98 definition and includes support for separate compilation. Important ideas
pioneered in TILT and its predecessor TIL include using intensional polymorphism [HM95] to
reduce the cost of implementing polymorphism and garbage collection. Compilation proceeds as
a series of typed transformations into successively lower level typed languages. Type information
is used to allow for optimized data representations and to do “almost tag-free” garbage collection.
Currently however, type information is mostly erased in TILT well before the transformation to
machine code is made, and hence safety properties of the resulting code can only be asserted - not
checked.

TILT uses types during compilation for optimization purposes, and consequently requires an
intermediate language with a very expressive type theory. Previous work on typed assembly lan-
guages has primarily focused on preserving type information for certification purposes. I claim that
these two uses of low level typed languages are compatible. A compiler can use types to generate
certified binaries while retaining the ability to perform complicated type based optimizations on a
full modern language.

I have demonstrated this by extending the TILT-ML compiler to maintain type information used
in the intermediate passes of the compiler all the way through code generation, producing certified
binaries without sacrificing the ability to perform type analysis optimizations. This dissertation
gives a careful theoretical description of the key elements of the compilation process, and proves
soundness theorems for the translations between the major intermediate languages. A description is
also given of the actual implementation, including some empirical results. In the next two sections, I
provide a more detailed overview of the previously existing (non-certifying) TILT infrastructure and
give a high-level overview of the certifying TILT compiler which is the subject of this dissertation.

2 The non-certifying TILT compiler

The past years have seen a great deal of interest in the idea of “typed compilers” that maintain
type information deep into the compilation process. Such type information can be exploited by
the compiler internally to allow for optimized data representations and to do tag-free garbage
collection, as well as providing the compiler with a basis for internal correctness checks. This work

2



Elaborate

Phase Split

Optimize

Code Gen

Typecheck

MIL (Typed)

MIL (Typed)

ML Source 

RTL (Untyped)

HIL (Typed)

Figure 1: TILT Architecture

was pioneered in the TIL compiler at CMU [TMC+96]. Other recent work has also suggested the
possibility of maintaining type information through to the machine code as a form of certification
[MWCG97].

The TIL compiler clearly demonstrated that typed compilation was both feasible and desirable.
However, TIL compiled only the core language of Standard ML: the powerful modular features
that are one of the most important elements of SML were not dealt with. The TIL Two (TILT)
compiler was aimed at addressing this shortcoming.

Figure 1 depicts the structure of the non-certifying TILT compiler. It’s architecture is based
around two typed intermediate languages. The initial elaboration from SML source targets a
structures calculus called the HIL (High Intermediate Language). This language is relatively close
to SML, and among other things provides the interface language used for separate compilation.
After elaboration (and hence typechecking), the HIL is translated to a second typed language
called the MIL (Middle Intermediate Language) through a process called phase splitting [HMM90].
The phase splitting process maps each SML structure into separate type and term level records,
representing the static and dynamic portions of the structure. Similarly, SML functors are mapped
to type and term level functions. In this fashion, modular programs are translated into programs
containing only lambda calculus terms.

The MIL is the language in which almost all of the optimization passes implemented in TILT
are done. This constrains the design of the MIL, since it must be possible to express the results
all of the desired optimizations in a typed fashion. In particular, it is important that primitives for
data representation optimizations be present at this level. By “hiding” type analysis inside of a few
primitives, the MIL avoids the need for a general typecase construct as used in the λML

i calculus.
Nonetheless, the fact that some MIL primitives do indeed analyze their types mandates a type
passing interpretation for the MIL operational semantics.

All of the intermediate languages of the TILT compiler up to and including the MIL are
typed, and all of the compiler passes on these languages are type-preserving in the sense that
they map well-typed programs to well-typed programs. Unfortunately for certification purposes,

3



MIL to LIL Proof of soundness

Proof of soundness

Proof of soundnessLIL to TALT

Closure Conv

LIL (Typed)

MIL (Typed)

LIL (Typed)

TALT (Typed)

Figure 2: Structure of the theoretical compiler

the subsequent languages from the MIL on down are not typed, and hence the generated code
cannot in general be proven safe. This dissertation replaces this un-typed backend with a new
type-preserving backend that produces certified code.

3 The certifying TILT compiler

One of the major goals of certifying compilation is to ensure that the certifying compiler is type-
preserving: that is, that it maps well-typed programs in the source language to well-typed programs
in the target language. In order to show that this is the case, I spend the first part of this dissertation
presenting idealized versions of the compiler intermediate languages, and proving the soundness of
the translations between them. The next two sections describe the idealized compiler and it’s
relation to the implementation.

3.1 The theoretical compiler

The theoretical portion of this dissertation describes the framework for a translation mapping the
original TILT internal language (the MIL, described in chapter 2) down to a typed assembly
language that I call TALT (Typed Assembly Language for TILT). This translation uses as an
intermediate stage a new internal language called the LIL (Low Level Language). The LIL is
an impredicatively typed lambda calculus based on Crary and Weirich’s LX [CW99]. Figure 2
describes the structure of the theoretical compiler.

The LIL, described in chapter 3, provides a very rich type system in which the type analysis of
TILT can be represented using term level constructs. In addition to various engineering benefits,

4



this fact allows us to take a type erasure interpretation, instead of the type passing interpretation
apparently mandated by the MIL primitives. The fact that we can embed type analysis into the
term level reflects in a typed fashion exactly the techniques already used in an untyped fashion
for implementing type passing languages. Chapter 4 gives a brief introduction to the type analysis
methodology of the LIL via a worked example.

The translation from MIL to LIL serves to make type analysis and type representations explicit
in the term language. This translation is described in detail in chapter 5. A subsequent pass
mapping LIL terms to LIL terms performs closure conversion. The closure conversion translation
is described in chapter 6.

Finally, I give a translation from the LIL into an idealized typed assembly language called
TALT. TALT code, is essentially machine code with type annotations added allowing it to be
typechecked. Currently, there are in addition to the standard assembly language instructions,
several typed primitives corresponding to assembler macros. These primitives handle memory
allocation (and hence the interaction with the garbage collector) and array bounds checking. The
TALT language is introduced in chapter 7, and the translation from LIL programs to TALT
programs is given in chapter 8.

The theoretical LIL is actually very close to the LIL as implemented in the compiler, mostly
lacking only an extended set of basic primitive operations. The presentation of the TALT target
language is intended to suggest how the ideas used to implement type analysis in the LIL trans-
late down to the assembly code level. The actual TALx86 implementation departs significantly
from that given here. However, for the most part the theoretical translations between the various
languages are designed to capture all or most of the essential details of the implementation. In
particular, the LIL to TALT translation of chapter 8 attempts as much as possible to account for
the actual code generation techniques used by the implementation.

The main result of the theoretical portion of this dissertation is a proof that the compilation
of LIL programs into TALT programs preserves types, in the sense that each of the individual
translations is proved to map well-typed terms to well-typed terms. Proofs of soundness for the
various translation phases are given in the chapters in which they are defined.

3.2 Compiler implementation

The second half of this thesis is an actual implementation of a certifying compiler for Standard
ML. The theoretical compiler discussed in the previous section is intended as a model for the
implementation. Where the original architecture (see figure 1) switches to an untyped language,
the new implementation must instead take the typed output and continue the compilation process
in a typed setting, as shown in figure 3. The certifying TILT implementation is discussed in chapter
9.

The implementation of certifying TILT required the addition of essentially five additional com-
piler stages.

• MIL singleton elimination

• Translation to LIL

• Closure conversion

• Optimization

5



Closure Conv

LIL to TALx86

Optimize

MIL to LIL

Singleton Elim

Optimize

Assemble, link

MIL Typecheck

LIL Typecheck

Talx86 Typecheck

LIL (Typed)

LIL (Typed)

LIL (Typed)

MIL (Typed)

MIL (Typed)

LIL (Typed)

TALx86 (Typed)

Typed binary files

Figure 3: Structure of the certifying TILT backend

6



• Translation to TALx86

To simplify the meta-theory of the LIL, I have chosen not to support the singleton kinds of
the original MIL as implemented in the compiler. Therefore, before (or concurrent with) the
translation to LIL, singletons must be eliminated from MIL code. A proof that this is possible,
and a simple algorithm for doing so has been given by Crary [Cra00], but some work may be
necessary to make a practical version of this that does not increase code size unnecessarily.

The translation to LIL is described in detail in chapter 5. The most interesting part of this
translation is the process of making type analysis explicit. The MIL has no general notion of
type analysis, instead using type analyzing primitives to implement specific optimizations such as
floating point array unboxing and flattening function arguments into records. The translation to
LIL compiles these primitives into uses of a general type analysis mechanism.

The MIL implements all of the optimizations that TILT supports, so extended optimization
of LIL code is mostly unnecessary. However, the translations tend to produce code that can
be improved significantly by a simple optimizer: for example, the closure converter frequently
introduces dead code and projections from known records. Rather than making other phases do
significantly more work to avoid this, it was simpler and cleaner to implement a basic optimization
pass for the LIL. Note that the optimizer does not have a counterpart in the theoretical model.

It would be appealing to rely as well on the MIL closure converter, and only translate closure
converted code. Unfortunately, the MIL notion of closure conversion is not easily compatible with
the LIL notion, since the MIL must closure-convert types as data. Translating closure converted
MIL code would require “de-closure converting” types, which is not appealing. For this reason,
a separate closure conversion pass for the LIL was implemented, closely modeled on the formal
closure conversion translation from chapter 6.

In order to allow intermediate code to be validated, it was also useful to implement a type checker
for the LIL language. This allows the output of the various phases of the compiler to be checked
for errors internally. The ability to check type correctness of internal program representations has
proved valuable in the development of TILT.

Lastly, a translation is given mapping LIL programs into TALx86 programs. Note that here,
the implementation diverges significantly from the formal model described in chapter 8, in that the
TALT and TALx86 languages are quite different. However, the theoretical model was carefully
designed to capture many of the interesting algorithmic approaches used in the actual implemen-
tation.

The final portion of the dissertation gives a basic quantitative evaluation of the implementation,
including measurements of the size of the generated code and certificates to get a feeling for the
overhead of certification. Some measurements of run time behavior of the compiled programs are
also given.

It is important to state here that while I measure these quantities to gain some understanding
of the cost of my approach, optimizing for small certificates and fast certification time is beyond the
scope of this dissertation. The purpose of this work is to demonstrate the feasibility of using types
to certify type analyzing code generated from a full-scale, general purpose language. Engineering
the representations, while certainly important for making the compiler practical, was not a primary
goal.

7



References

[CLN+00] Christopher Colby, Peter Lee, George C. Necula, Fred Blau, Mark Plesko, and Kenneth
Cline. A certifying compiler for Java. In Proceedings of the Conference on Programming
Language Design and Implementation (PLDI’00), pages 95–107, Vancouver, Canada,
June 2000. ACM Press.

[Cra00] Karl Crary. Sound and complete elimination of singleton kinds. Technical Report
CMU-CS-00-104, School of Computer Science, Carnegie Mellon University, 2000.

[CW99] Karl Crary and Stephanie Weirich. Flexible type analysis. In 1999 ACM International
Conference on Functional Programming, Paris, France, September 1999. ACM Press.

[HM95] Robert Harper and Greg Morrisett. Compiling polymorphism using intensional type
analysis. In Twenty-Second ACM Symposium on Principles of Programming Lan-
guages, pages 130–141, San Francisco, CA, January 1995.

[HMM90] Robert Harper, John C. Mitchell, and Eugenio Moggi. Higher-order modules and the
phase distinction. In Seventeenth ACM Symposium on Principles of Programming
Languages, San Francisco, CA, January 1990.

[MCG+99] Greg Morrisett, Karl Crary, Neal Glew, Dan Grossman, Richard Samuels, Frederick
Smith, David Walker, Stephanie Weirich, and Steve Zdancewic. TALx86: A realis-
tic typed assembly language. In Second Workshop on Compiler Support for System
Software, pages 25–35, Atlanta, Georgia, May 1999.

[MWCG97] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to Typed
Assembly Language. Technical Report TR97-1651, Department of Computer Science,
Cornell University, 1997.

[MWCG98] Greg Morrisett, David Walker, Karl Crary, and Neal Glew. From System F to typed
assembly language. In Twenty-Fifth ACM Symposium on Principles of Programming
Languages, pages 85–97, San Diego, January 1998. Extended version published as
Cornell University technical report TR97-1651.

[Nec98] George C. Necula. Compiling with Proofs. PhD thesis, Carnegie Mellon University,
October 1998. Available as Technical Report CMU-CS-98-154.

[NL98] George C. Necula and Peter Lee. The design and implementation of a certifying
compiler. In Keith D. Cooper, editor, Proceedings of the Conference on Programming
Language Design and Implementation (PLDI’98), pages 333–344, Montreal, Canada,
June 1998. ACM Press.

[TMC+96] David Tarditi, Greg Morrisett, Perry Cheng, Chris Stone, Robert Harper, and Peter
Lee. TIL: A type-directed optimizing compiler for ML. In ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 181–192, Philadelphia,
PA, May 1996.

8


