Certifying Compilation for Standard ML in a
Type Analysis Framework.

Leaf Eames Petersen

May, 2005
CMU-CS-05-135

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Robert Harper, Chair
Karl Crary
Peter Lee
Greg Morrisett (Harvard University)

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

(© 2005 Leaf Eames Petersen

This research was sponsored by the National Science Foundation under grant nos. CCR-0121633 and EIA-
9706572, and the US Air Force under contract no. F-19628-95-C-0050. The views and conclusions contained in this
document are those of the author and should not be interpreted as representing the official policies, either expressed
or implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: Types, Compilers, Standard ML, Typed Assembly Language, Certifying Compi-
lation, Typed Register Allocation, Type Analysis

Abstract

Certified code is native machine code that is annotated with an automatically checkable certificate
attesting to the conformance of the program to a specified safety policy. Certified code frameworks
have been built based on first-order logic (PCC) and on types (TAL). Compilers generating certified
code have been built for safe subsets of C and for Java(tm).

Type-preserving compilers such as the TILT /ML compiler implement compilation as transfor-
mations on typed internal languages. Types are used by the compiler for internal verification, and for
optimization purposes. Type analysis can be used to implement optimizations such as non-uniform
data representation and tag-free garbage collection. However, none of the existing type-preserving
compilers for full-scale languages maintain type information all the way to the machine-code level,
and hence are not yet able to generate certified code.

In this thesis, I demonstrate that certified compilation is possible in a type analysis framework
by extending the TILT /ML compiler to generate certified code in the form of typed assembly lan-
guage without compromising the existing optimizations of the compiler. This work demonstrates
that a compiler can use types to generate certified binaries for a full modern language even in the
presence of agressive type-analysis based optimization.

To my wife, Adriana

Acknowledgments

This thesis would not have come to be without the help of many people.

First among these are my mother and father, who first started me on the path of learning and
provided me the freedom and the means to follow it as far as I desired. They gave me my education,
in every sense.

All of the members of my committee provided excellent guidance and feedback, as well as many
interesting conversations that informed this work. Bob Harper must be thanked especially: for
teaching and mentoring me through this long process, for encouraging me to explore my ideas,
and for seeing me through to the other side. Bob should also be thanked for relentlessly evicting
the “wicked whiches” and other strange beasts that lurk in the dark corners of my prose. Karl
Crary contributed a great deal to the framework underlying this work: that it was possible at all
is a credit to the extent to which he foresaw the issues and prepared the ground. His insight and
assistance were invaluable.

The system described in this thesis builds on the efforts of many other people. Without the
work done on the TILT compiler by Perry Cheng, Chris Stone, and others, none of this would have
been possible. I should especially like to thank David Swasey for doing a great deal of thankless
work to make the TALx86 backend (and the compiler in general) much more robust, usable, and
correct. This thesis also benefited hugely from the excellent work done by Greg Morrisett and the
rest of the TALx86 team.

Many other people have offered me their help, support, and friendship while I have been at
CMU, including Sharon Burks, Catherine Copetas, Frank Pfenning, Rose Hoberman, Derek Dreyer,
Rowan Davies, Dan Spoonhower, Tara Cheesman, Chris Palmer, Carrie Sparks, and many others.
Thanks for making my time in graduate school so much more enjoyable!

Leaf Petersen
May, 2005

vii

viil

Contents

1 Introduction

1.1 Typesin compilation L L
1.2 The non-certifying TILT compiler
1.3 The certifying TILT compiler
1.3.1 The theoretical compiler o
1.3.2 Compiler implementation L oo
1.4 Overview e e e
2 MIL
2.1 Kinds and constructors. e
2.2 Proper types e
2.3 Termso e e e
3 LIL
3.1 The LIL syntax and static semantics
3.1.1 Typing contexts L e
3.1.2 Constructors and Kinds
3.1.3 Terms o e
3.2 Useful properties of the LIL
4 Example: Floating point array flattening
4.1 An optimized array strategy
4.2 LIL implementation of optimized arrays
4.2.1 Static encodings
4.2.2 Dynamic encodings
4.2.3 Type analyzing terms Lo

5 The MIL to LIL translation

5.1 Translation overview L e
5.2 Static encodings of constructors L L L L L
5.2.1 The kind translation
5.2.2 The constructor translation
5.2.3 Translation of typing contexts oo
5.2.4 Proofs of soundness for the constructor and kind translation.
5.2.5 Additional properties of the constructor translation
5.3 Dynamic encoding of constructorso

X

11
11

13
13
15
15
18
20

25
25
25
26
27
28

5.3.1 Dynamic encoding typeso e

5.3.2 Notational issues e
5.3.3 Dynamic encodingso
5.3.4 Dynamic encoding of type contexts L.
5.3.5 Proofs for the dynamic encoding translations
5.4 Type translations L e
5.4.1 Proper MIL types e
5.4.2 The term typing context translation
5.4.3 Proofs of soundness for the proper type translations
5.4.4 The type translation respects equivalence
5.5 The term translation
5.5.1 Definitions for the term translation
5.5.2 The term level translation Lo
5.5.3 Proof that the term level translation preserves typing
5.6 The complete term level translation

Closure converted LIL

6.1 Introduction e e

6.2 The closure conversion translation
6.2.1 Constructors e
6.2.2 Typing contexts e
6.2.3 Terms e
6.2.4 Heap Values and Programs

6.3 Soundness of closure conversion e
6.3.1 Constructors e
6.3.2 Typing contexts
6.3.3 Terms e

TILTAL

7.1 TILTAL overview o i e st e
T.1.1 Stackso
T.1.2 Values e
7.1.3 Operands: Registers and stack slots
7.1.4 Instructions and instruction sequences
7.1.5 Heap values, heaps, and register files
7.1.6 Programs e e
7.1.7 Typing contexts

7.2 TILTAL derived forms e
7.2.1 Partial instruction sequenceso oo
7.2.2 Heap fragments e

The LIL to TILTAL translation

8.1 The constructor level
8.1.1 Kinds e e
8.1.2 The constructor translation
8.1.3 Soundness of the type translation

75
75
75
76
76
7
78
80
80
83
83

91
91
91
94
95
95
96
96
96
96
96
97

8.2 The term level: preliminaries o 103

8.2.1 Register and stack slot allocation 0. 103
8.2.2 Derived instructions L L 107

8.3 The term translation L 111
8.3.1 Values e 112
8.3.2 Operations e 117
8.3.3 Soundness of the operation translations 119
8.3.4 EXpPressions e e 127
8.3.5 Soundness of the expression translation 131
8.3.6 Heap values, heaps, and programs 147

8.4 The complete translation rules o 153
9 Implementation 163
9.1 Singleton Elimination L e 163
9.1.1 Preserving sharing of typeso L 165
9.1.2 Optimizations for singleton elimination, 165
9.1.3 Runtime behavior 166

9.2 MIL to LIL e 167
9.3 Closure Conversion i 168
9.3.1 Closure conversion strategies e 168
9.3.2 Recursive code closure conversion 168

9.4 General Optimization e 169
9.5 Lil ToTal. e 170
9.5.1 Code generation 170
9.5.2 Register allocation 171
9.5.3 Additional TILT constructs 172

9.6 Engineering L e 174
9.6.1 Typerepresentation e 174
9.6.2 Traversing programs« . . ot i e e e e e e e e 175
9.6.3 Fast substitution 175
9.6.4 Fast alpha~equivalence L 175
9.6.5 Weak Head-Normalization 176
9.6.6 Engineering the LIL type checker 176

9.7 Compilation units L 180
9.7.1 Compiler generated files L oL 180

9.8 Measurements Lo e e e e 181
9.8.1 Benchmarks e 181
9.8.2 Typesize e e 181
9.8.3 Benchmark unit sizes 184
9.8.4 Libraries and linking 185
9.8.5 Runtime e 191

10 Conclusions and future work 195
10.1 Summaryo e 195
10.1.1 Theory o e 195
10.1.2 Practice e e e e 195

X1

10.1.3 Conclusions L
10.1.4 Compiler engineering L L
10.2 Future work L oL
10.2.1 Optimization
10.2.2 Garbage collection
10.2.3 Infrastructure improvements Lo
10.2.4 Reducing the trusted computing baseo
10.3 Conclusions L e

A MIL static semantics
B LIL static semantics

C TILTAL static and dynamic semantics
C.1 TILTAL Static semantics o i v i it e e e e e e e e e
C.2 TILTAL dynamic semantics v v i i e e e
C.2.1 Definitions e
C.2.2 Transitions e

xii

List of Figures

1.1 TILT Architecture e 3
1.2 Structure of the theoretical compiler 5
1.3 Structure of the certifying TILT backend 6
2.1 MIL syntax o o o e e e e e e 10
3.1 LIL syntax oo vt i e e e e 14
3.2 Constructor constants and their kinds o o000 16
5.1 The constructor translation (static encoding) 35
5.2 Derived non-named-form expressions 43
5.3 Typing rules for derived (non-named-form) expressions 43
5.4 The dynamic encoding translation 0oL, 44
6.1 Closure converting recursive function definitions. 79
7.1 TILTAL syntax o0 it e e e e e e e s 92
7.2 Judgements defining well-typedness of TILTAL programs 93
8.1 The constructor translation L L 100
8.2 LIL to TILTAL translation judgements 111
8.3 Exception case translation in TILTAL. 130
8.4 Exception handler implementation in TILTAL. 132
9.1 Structure of the certifying TILT backend 164
9.2 Benchmark timings with singleton elimination (normalized to timings without sin-
gleton elimination). 166
9.3 Benchmarks 182
9.4 Size breakdown of individual benchmark units, in kilobytes. 183
9.5 Size breakdown of individual benchmark units, relative. 184
9.6 Total sizes of compilation groups (kilobytes). 186
9.7 Total sizes of compilation groups (relative). 187
9.8 Breakdown of certificate overhead across individual Basis units (kilobytes) 187
9.9 Assembly file size vs assembled output size (kilobytes) 189
9.10 Absolute sizes of large units (kilobytes). oL 190
9.11 Relative sizes of large units. L L 191
9.12 Normalized runtime (MLton = 1) 192

C.1 TILTAL transitions (part I)
C.2 TILTAL transitions (part II)
C.3 TILTAL transitions (part III)

Xiv

Chapter 1

Introduction

1.1 Types in compilation

It is an unfortunate fact about the state of programming that even good programs sometimes go
wrong. It is not uncommon for programs to crash or misbehave, whether accidentally, or with
malicious intent. This problem has been greatly compounded in recent years by the proliferation
of mobile code. More and more of the code that is run is downloaded in bits and pieces from
various sources. Examples of this include Java-script and Java(TM) programs downloaded into a
web browser, applications downloaded directly over the internet, and code run on behalf of others
(such as the SETIQHOME project, which uses donated spare processor cycles to further the search
for extra-terrestrial life). The proliferation of mobile code is expected only to increase as networked
technology becomes more a part of everyday life.

However, it is particularly hard to trust the behavior of this sort of code. The code producer
may be unknown to the code consumer, or the identity of the producer may be spoofed. Moreover,
even trusted producers occasionally produce programs that go wrong.

It would certainly seem desirable to be able to rule out programs that are unsafe. Unfortunately,
determining the safety of arbitrary machine code is undecidable. A compromise solution that has
been in existence for several decades, is to restrict ourselves to programming in a language which
has the property that all programs are safe. The resulting compiled code is therefore safe by
construction, modulo the correctness of the compiler. Languages such as LISP, ML and Java all
have this property: that all programs written in these languages are guaranteed with some level of
certainty not to produce undefined and unsafe behavior.

Unfortunately for the purposes of mobile code, the safety properties enjoyed by these languages
are only guaranteed at the source level: once the source code has been compiled to machine in-
structions, the safety guarantee lies only in the implicit property of being in the image of the safe
language under compilation. One solution to this is to ship around instead something tantamount
to source code, allowing the consumer to validate the code independently. This is in essence the
Java(TM) byte-code solution. This places much of the burden of compilation on the code consumer,
who must still in turn trust that their own compiler is correct.

The two most commonly used solutions then, are either to accept arbitrary machine code based
on trust in the producer of the code, or to accept only annotated high-level code and to trust the
local compiler. Both of these solutions leave much to be desired.

To better this, several systems have been proposed for annotating machine code in such a way

that safety remains checkable. Along with the code, the code consumer receives a certificate that
can be used to check that that the code conforms to the correctness assertions that it claims. The
only software that the code consumer must still trust is the checker itself. Two notable examples of
this include Proof Carrying Code (PCC) from CMU [Nec98] and Typed Assembly Language (TAL)
from Cornell [MWCG98|. The PCC system provides for machine code to be annotated with proofs
of safety properties done in first-order logic. The code consumer simply checks that the proofs are
indeed correct — a relatively simple procedure. This system is very general, in that it can be used
to certify any property which can be expressed in the logic. TAL on the other hand specializes to
the particular property of type safety. TAL provides for a machine code which is annotated with
types, which can then be type checked by the code consumer.

A certifying compiler is one which produces, along with its normal output, a certificate which
can be used to check that the generated code is safe according to some policy. Certifying compilers
have been written translating safe subsets of C to both PCC and TAL [MCG*99, NL9§|. More
ambitiously, a full scale Java(TM) compiler has been written targeting PCC [CLN100].

The TILT (TIL Two) compiler is an optimizing compiler developed at CMU that implements
the full Standard ML ’98 definition and includes support for separate compilation. Important ideas
pioneered in TILT and its predecessor TIL include using intensional polymorphism [HM95] to
reduce the cost of implementing polymorphism and garbage collection. Compilation proceeds as
a series of typed transformations into successively lower level typed languages. Type information
is used to allow for optimized data representations and to do “almost tag-free” garbage collection.
Prior to this work however, type information was mostly erased in TILT well before the transfor-
mation to machine code was made, and hence safety properties of the resulting code could only be
asserted - not checked.

TILT uses types during compilation for optimization purposes, and consequently requires an
intermediate language with a very expressive type theory. Previous work on typed assembly lan-
guages has primarily focused on preserving type information for certification purposes. I claim that
these two uses of low level typed languages are compatible. A compiler can use types to generate
certified binaries while retaining the ability to perform complicated type based optimizations on a
full modern language.

I have demonstrated this by extending the TILT-ML compiler to maintain type information used
in the intermediate passes of the compiler all the way through code generation, producing certified
binaries without sacrificing the ability to perform type analysis optimizations. This dissertation
gives a careful theoretical description of the key elements of the compilation process, and proves
soundness theorems for the translations between the major intermediate languages. A description
is also given of the actual implementation, including some empirical results.

It is becoming increasingly clear that type preserving compilation, in addition to serving as a
mechanism for enabling safe mobile code, also provides great benefits in its own right as a compiler
engineering technique. Just as type safe languages allow programmers to write correct code more
quickly, type preserving compilation allows compiler implementers to write correct compilers more
quickly. Type checking the intermediate representations of programs within the compiler allows
many or most compiler bugs to be caught during compilation and to be localized to the particular
point of failure in the compiler. Whole classes of pernicious compiler bugs (such as those that
involve stack or memory corruption) can be eliminated by producing checkably type safe code.
One of the results of this thesis is to provide further evidence of the efficacy of this technique, and
to add to the body of experience in the engineering of type preserving compilers. This aspect of

—_
ML Source_—{ Elaborate

\. J

\ |/ HIL (Typed)

Phase Split

4 A

\| [y MIL (Typed) Typecheck]

Optimize

\. J

J|/ MIL (Typed)

~\

[Code Gen ﬁ RTL (Untyped)

J

Figure 1.1: TILT Architecture

the implementation experience is discussed further in section 10.1.4.

1.2 The non-certifying TILT compiler

The past years have seen a great deal of interest in the idea of “typed compilers” that maintain
type information deep into the compilation process. Such type information can be exploited by
the compiler internally to allow for optimized data representations and to do tag-free garbage
collection, as well as providing the compiler with a basis for internal correctness checks. This
work was pioneered in the TIL compiler at CMU [TMC96], and has been adopted by numerous
other compilers, including the Glasgow Haskell Compiler. Other recent work has also suggested the
possibility of maintaining type information through to the machine code as a form of certification
[MWCGIT].

The TIL compiler clearly demonstrated that typed compilation was both feasible and desirable.
However, TIL compiled only the core language of Standard ML: the powerful modular features
that are one of the most important elements of SML were not dealt with. The TIL Two (TILT)
compiler was aimed at addressing this shortcoming.

Figure 1.1 depicts the structure of the non-certifying TILT compiler. Its architecture is based
around two typed intermediate languages. The initial elaboration from SML source targets a
structures calculus called the HIL (High Intermediate Language). This language is relatively close
to SML, and among other things provides the interface language used for separate compilation.
After elaboration (and hence typechecking), the HIL is translated to a second typed language
called the MIL (Middle Intermediate Language) through a process called phase splitting [HMM90].
The phase splitting process maps each SML structure into separate type and term level records,
representing the static and dynamic portions of the structure. Similarly, SML functors are mapped
to type and term level functions. In this fashion, modular programs are translated into programs
containing only lambda calculus terms.

The MIL is the language in which almost all of the optimization passes implemented in TILT

3

are done. This constrains the design of the MIL, since it must be possible to express the results of
all of the desired optimizations in a typed fashion. In particular, it is important that primitives for
data representation optimizations be present at this level. By “hiding” type analysis inside of a few
primitives, the MIL avoids the need for a general typecase construct as used in the AM" calculus.
Nonetheless, the fact that some MIL primitives do indeed analyze their types mandates a type
passing interpretation for the MIL operational semantics.

All of the intermediate languages of the TILT compiler up to and including the MIL are
typed, and all of the compiler passes on these languages are type-preserving in the sense that
they map well-typed programs to well-typed programs. Unfortunately for certification purposes,
the subsequent languages from the MIL on down are not typed, and hence the generated code
cannot in general be proven safe. This dissertation replaces this un-typed backend with a new
type-preserving backend that produces certified code.

1.3 The certifying TILT compiler

One of the major goals of certifying compilation is to ensure that the certifying compiler is type-
preserving: that is, that it maps well-typed programs in the source language to well-typed programs
in the target language. In order to show that this is the case, I spend the first part of this dissertation
presenting idealized versions of the compiler intermediate languages, and proving the soundness of
the translations between them. The next two sections describe the idealized compiler and its
relation to the implementation.

1.3.1 The theoretical compiler

The theoretical portion of this dissertation describes the framework for a translation mapping the
original TILT internal language (the MIL, described in chapter 2) down to a typed assembly
language that I call TILTAL (Typed Assembly Language for TILT). This translation uses as
an intermediate stage a new internal language called the LIL (Low Level Language). The LIL is
an impredicatively typed lambda calculus based on Crary and Weirich’s LX [CW99]. Figure 1.2
describes the structure of the theoretical compiler.

The LIL, described in chapter 3, provides a very rich type system in which the type analysis of
TILT can be represented using term level constructs. In addition to various engineering benefits,
this fact allows us to take a type erasure interpretation, instead of the type passing interpretation
apparently mandated by the MIL primitives. The fact that we can embed type analysis into the
term level reflects in a typed fashion exactly the techniques already used in an untyped fashion
for implementing type passing languages. Chapter 4 gives a brief introduction to the type analysis
methodology of the LIL via a worked example.

The translation from MIL to LIL serves to make type analysis and type representations explicit
in the term language. This translation is described in detail in chapter 5. A subsequent pass
mapping LIL terms to LIL terms performs closure conversion. The closure conversion translation
is described in chapter 6.

Finally, I give a translation from the LIL into TILTAL. TILTAL code is essentially machine
code with type annotations added allowing it to be typechecked. Currently, there are in addition to
the standard assembly language instructions several typed primitives corresponding to assembler
macros. These primitives handle memory allocation (and hence the interaction with the garbage

4

\“/ MIL (Typed)
MIL to LIL

i

Proof of soundness]

\ LIL (Typed)

i

[Closure Conv Proof of soundnessJ

\ LIL (Typed)

LIL to TALT

J

TALT (Typed)

i

Proof of soundness]

Figure 1.2: Structure of the theoretical compiler

collector) and array bounds checking. The TILTAL language is introduced in chapter 7, and the
translation from LIL programs to TILTAL programs is given in chapter 8.

The theoretical LIL is actually very close to the LIL as implemented in the compiler, mostly
lacking only an extended set of basic primitive operations. The presentation of the TILTAL target
language is intended to suggest how the ideas used to implement type analysis in the LIL trans-
late down to the assembly code level. The actual TALx86 implementation departs significantly
from that given here. However, for the most part the theoretical translations between the various
languages are designed to capture all or most of the essential details of the implementation. In
particular, the LIL to TILTAL translation of chapter 8 attempts as much as possible to account
for the actual code generation techniques used by the implementation.

The main result of the theoretical portion of this dissertation is a proof that the compilation
of LIL programs into TILTAL programs preserves types, in the sense that each of the individual
translations is proved to map well-typed terms to well-typed terms. Proofs of soundness for the
various translation phases are given in the chapters in which they are defined.

1.3.2 Compiler implementation

The second half of this thesis is an actual implementation of a certifying compiler for Standard
ML. The theoretical compiler discussed in the previous section is intended as a model for the
implementation. Where the original architecture (see figure 1.1) switches to an untyped language,
the new implementation must instead take the typed output and continue the compilation process
in a typed setting, as shown in figure 1.3. The certifying TILT implementation is discussed in
chapter 9.

\J l/ MIL (Typed)

[Smgleton Ellm] MIL Typecheck }

NI MIL (Typed)

MIL to LIL

J L (Typed)

Optimize

Nl LIL (Typed)

Closure Coan > LIL Typecheck}

Optimize]

Nl LIL (Typed)

LIL to TALX86J

Nl TALx86 (Typed)

|
|
[LIL (Typed
e
|
[

ssemble, Ilnk]

Talx86 Typecheck}

Typed blnary files

Figure 1.3: Structure of the certifying TILT backend

The implementation of certifying TILT required the addition of essentially five additional com-
piler stages.

e MIL singleton elimination
e Translation to LIL

Closure conversion

Optimization
e Translation to TALx86

To simplify the meta-theory of the LIL, I have chosen not to support the singleton kinds of
the original MIL as implemented in the compiler. Therefore, before (or concurrent with) the
translation to LIL, singletons must be eliminated from MIL code. A proof that this is possible,
and a simple algorithm for doing so has been given by Crary [Cra00]. The implementation of this
algorithm and its effects on compiled code are discussed in section 9.1.

The translation to LIL is described in detail in chapter 5. The most interesting part of this
translation is the process of making type analysis explicit. The MIL has no general notion of
type analysis, instead using type analyzing primitives to implement specific optimizations such as
floating point array unboxing and flattening function arguments into records. The translation to
LIL compiles these primitives into uses of a general type analysis mechanism.

The MIL implements all of the optimizations that TILT supports, so extended optimization
of LIL code is mostly unnecessary. However, the translations tend to produce code that can
be improved significantly by a simple optimizer: for example, the closure converter frequently
introduces dead code and projections from known records. Rather than making other phases do
significantly more work to avoid this, it was simpler and cleaner to implement a basic optimization
pass for the LIL. Note that the optimizer does not have a counterpart in the theoretical model.

It would be appealing to rely as well on the MIL closure converter, and only translate closure
converted code. Unfortunately, the MIL notion of closure conversion is not easily compatible with
the LIL notion, since the MIL must closure-convert types as data. Translating closure converted
MIL code would require “de-closure converting” types, which is not appealing. For this reason,
a separate closure conversion pass for the LIL was implemented, closely modeled on the formal
closure conversion translation from chapter 6.

In order to allow intermediate code to be validated, it was also useful to implement a type checker
for the LIL language. This allows the output of the various phases of the compiler to be checked
for errors internally. The ability to check type correctness of internal program representations has
proved valuable in the development of TILT.

Lastly, a translation is given mapping LIL programs into TALx86 programs. Note that here,
the implementation diverges significantly from the formal model described in chapter 8 in that
the TILTAL and TALx86 languages are quite different. However, the theoretical model was
carefully designed to capture many of the interesting algorithmic approaches used in the actual
implementation.

The final portion of the dissertation gives a basic quantitative evaluation of the implementation,
including measurements of the size of the generated code and certificates to get a feeling for the
overhead of certification. Some measurements of run time behavior of the compiled programs are
also given.

It is important to state here that while I measure these quantities to gain some understanding
of the cost of my approach, optimizing for small certificates and fast certification time is beyond the
scope of this dissertation. The purpose of this work is to demonstrate the feasibility of using types
to certify type analyzing code generated from a full-scale, general purpose language. Engineering
the representations, while certainly important for making the compiler practical, was not a primary
goal.

1.4 Overview

In the next chapter, I provide a brief introduction to a simplified version of the MIL intermediate
language which is the original source language for the compilation process described in this disser-
tation. Chapter 3 describes the LIL language which serves as the main intermediate language of
the new backend. The complete static semantics of the MIL and the LIL are given in appendixes
A and B, respectively. Chapter 4 gives an introduction to the style of type-analysis used in the LIL
via an extended example. The translation from MIL to LIL is described in detail in chapter 5, and
a proof of soundness is given. Closure conversion of LIL terms is described and proved sound in
chapter 6. Chapter 7 introduces the TILTAL typed assembly language which serves as the target
of the theoretical compiler. A translation from LIL programs to TILTAL programs is described
and proved sound in chapter 8. Finally, the implementation and its relation to the theoretical
presentation is discussed in chapter 9, and some empirical results about the implementation are
presented.

Chapter 2

MIL

I describe the MIL here only briefly, as the theoretical and practical aspects of this calculus have
been discussed in detail elsewhere [PCHS00, SH99, VDPT03]. For the purposes of the translation,
I assume that singletons have already been eliminated [Cra00], although in practice it may be
desirable to do this concurrently with the translation. The syntax of the singleton free MIL is
given in figure 2.1. The MIL is a predicative lambda calculus based on Girard’s F,,, extended with
primitives for type analysis. The intention is that these primitives are definable in terms of the A}"*
calculus of Harper and Morrisett [HM95]. In the untyped TILT back-ends, these primitives are
only compiled directly after moving to an untyped calculus. The complete static semantics for the
MIL are given in appendix A and are fairly straightforward. The remainder of this section gives
a high-level overview of the structure of the language and describes the type-analysis methodology
it employs.

2.1 Kinds and constructors

The kind structure of the MIL is relatively simple in the absence of singletons, with function
and product kinds to classify constructor functions and tuples, and the base kind T3o to classify
constructors which classify terms. The notation T3y indicates that the terms classified by construc-
tors of this kind are intended to be represented by a 32 bit quantity after compilation. I use the
term “constructor” in preference to the term “type” when refering to constructors of arbitrary or
unspecified kind. I reserve the standard terminology “type” for constructors of kind T's.

Most of the the base constructors are completely standard, with the exception of the treatment
of sums and the constructs for type analysis. The sum type encodes the number of non value-
carrying fields directly, instead of simply using unit as the carried value. In addition, the MIL has
a known sum type, corresponding to the type of a sum for which the branch inhabited is known.
A special projection operation projects the carried value out of a known sum. This allows the case
construct to avoid destructing its value which may be unnecessary if the arm doesn’t actually use
the carried value.

Type analysis is present at the type level in the form of the Vararg construct and implicitly
in the Array type. The Vararg type classifies the term-level vararg construct, which is used to
implement non-standard calling conventions for functions which take tuples as arguments. In TILT
tuple arguments to functions are always flattened into registers if the number of fields in the tuple is
small. In order to make this work with polymorphic functions, it is necessary to use type analysis.

SV

opr

—

T32|/€1—>/€2‘I€1X/€2

a|Int |Boxf | (¢) —clci X ... X ¢y

wla, B).(c1,c2) | {e1,¢2) | T1c|mac|)\(a::/{').c | 109
Varargcl—>02 ’ Varargcl—>t62 | Sumz(éj | Sumz (5)
Array, | Farray | Exn | Dyntag,

T(c) | V[aZk](7)(i) — 7 | V[aZ&|(F) (@) = 7|11 x ... X 7
T ’ Zf

x| 7] roll,sv | unroll. sv
inj,tagJSumi(E)

sv | vararg, ., sv | onearg, . sv
boxf fv | unboxf sv | fv

proj’sv | injéumi@ sv

(s0) | select’ sv
case(sv)(zy.€1,...,Tn.€y) | handle (e1, x.€2)
sv[é)(s0)(fv) | inj dyn,(sv1, sv2)
raise; sv | mkexntag,
exncase,(sv)(sv1 = xi.e1,- = €3)
sub.(sv1, sv2) | £sub(svi, sva)
upd,.(sv1, svg, sv3) | fupd(svy, sva, fv)
array,(svi, sv2) | farray(sv, fv)

sv | let, rec, flafik|(x7r)(4F).eine
let;x = oprine | let,z;y = oprine

o | Ak

[] ’ P,xiT ’ P,CE64

Figure 2.1: MIL syntax

10

The Vararg type can be thought of as simply a type level typecase in a A}** like language which
branches on the argument type of a function type. If the argument type is a small tuple, it returns
a multi-argument function type where the fields of the tuple have been flattened. Otherwise, it
leaves the function type unchanged.

The Array type implicitly distinguishes between arrays of boxed floating point numbers and
other arrays, in order to flatten the boxed float arrays. This is discussed in more detail below. The
rest of the constructor level is a standard typed lambda calculus, classified by the function and
product kinds.

2.2 Proper types

Also described in figure 2.1 is the syntax for the type level. Unlike the constructor level which
corresponds to the notion of types as data, the type level in a predicative system corresponds to the
notion of types as classifiers. The constructor level is included into the type level via an explicit
inclusion T'(c). The type level also contains classifiers for polymorphic functions and tuples of
terms. The duplication of the tuple type at the type level indicates the possibility of constructing
pairs containing polymorphic functions which is not provided for by the constructor level.

2.3 Terms

For the most part, the term-level MIL is a standard lambda calculus with a few non-standard
primitives. The presentation here restricts the syntax to a named form [FSDF93, Mog89] to reflect
the form used internally in the TILT compiler. Named form forces incremental calculations to be
given names via variable binding (hence named form) which is important for various compiler passes
and code generation. Unlike most lambda calculi, the MIL also includes low level data represen-
tation primitives (such as float boxing and unboxing primitives). This allows data representation
optimizations to be expressed at the level of the MIL.

A key optimization that TILT implements is the use of non-uniform data representation. Many
implementations of languages with polymorphism require that all values fit into a word. In par-
ticular, array elements must always be word-sized, which means that arrays of 64 bit floats (for
example) must actually be arrays of pointers to floats. This is unfortunate because of the wasted
space, the extra indirections to access the data, and because of the consequent loss of data locality.
TILT avoids this by incorporating type analysis into the array primitives. By passing types at
runtime and allowing code to dispatch on them, unboxed floating point arrays can be used with
the appropriate subscript stride chosen at runtime.

The MIL calculus differs from the A} calculus of [HM95] in that it does not contain an explicit
type analysis construct such as typerec or typecase. This does not mean however that the idea of
intensional type analysis has been abandoned: rather, the type analysis has been hidden inside the
primitives that need to use it.

For example, TILT deals with floating point numbers by syntactically distinguishing between
boxed and unboxed floats, with appropriate term level conversions between them. This allows
the optimizer to deal directly with data representation optimizations, even at the relatively high
level of the MIL. The syntactic restriction on unboxed floats prevents polymorphic functions from
being instantiated with the unboxed float type, so that all polymorphic values take up 32 bits.
All unboxed floating point arguments are segregated so that they may be passed in float registers.

11

A special Farray type is provided corresponding to the type of arrays of unboxed floats, with
corresponding term-level operations farray, fsub and fupd.

One obvious problem with this is that arrays of values whose type is not statically known
to be Float would seem to have to use a boxed representation. By using type analysis in the
array constructor as well as the subscript operator however, at least some of the difficulty can be
avoided. Essentially, the Array constructor incorporates a typecase which selects the appropriate
array representation based on the type of the carried values. Similarly, the term-level subscript
and update operations must dispatch on the type to select the appropriate operation. In the case
that the type turns out to be Boxf, the subscript operation will also be forced to re-box the float
before returning it, since subscripting into an array of boxed floats returns a value of type Boxf.

Type analysis is also encoded into the vararg and onearg primitives which implement special
calling conventions for single argument functions whose argument type is a small record type. For
example, the term vararg, . sv corresponds roughly to the following code using an explicit A}"*
style typecase:

typecase c; of
Record[] => lambdal]. sv <>
| Record[t] => lambdal[x;t]. sv <x>
| Record[t1,t2] => lambdal[x1;t1,x2;t2]. sv <x1,x2>
| - =>f

The onearg construct is the inverse of vararg, turning a variable argument function back to a
normal function. The maximum number of fields that can be flattened (here shown as two) is a
machine dependent parameter of the type theory.

The MIL hides type analysis by replacing certain stylized uses of typecase with primitives that
analyze their type arguments. At some point however, it becomes necessary to make this analysis
explicit. Currently in the compiler, this happens when the MIL is translated to a low-level untyped
language. One of the major challenges in pushing type information down to the machine level in
TILT is making this analysis explicit in a typed language that is amenable to translation to a
typed assembly language. The next chapter discusses a strategy for doing this by reflecting type
analysis into the term level of a more powerful lambda calculus.

12

Chapter 3

LIL

There is an apparent disparity between the type-passing model of type analysis and the constructs
available at the machine level. Evaluation of terms depends on the type arguments as well as the
term arguments, but real machine processors are untyped. The ad-hoc solution originally used in
TILT is to translate to an untyped setting, choosing term-level representatives for the type data in
the process. Type analysis then becomes simple branches on the values chosen to represent various
types. This untyped approach was taken because of the absence of a well-understood type system
for typing such code.

In order to make this ad-hoc solution viable for producing typed certified code, Crary, Weirich,
and Morrisett describe a type theory that permits term-level representation of types and type
analysis in a typed setting [CWM98] using primitive terms to represent types. Crary and Weirich
subsequently extend this notion [CW99] to a type theory in which representation of types is defin-
able using only the ordinary lambda calculus term constructs with an enriched type system. The
LIL adopts this idea for its treatment of type analysis, and also extends the MIL with constructs
for representing closures.

3.1 The LIL syntax and static semantics

Figure 3.1 describes the complete syntax of the LIL. As with the MIL, the language is syntactically
restricted to named form. This is not particularly necessary for theoretical purposes, but matches
more closely the implementation.

Kinds form the top of the syntactic hierarchy, and are generally written using the meta-variable
k. Kinds classify the constructors, for which the meta-variables ¢ is generally used. In addition
the meta-variables 7 and ¢ are used to distinguish constructors of kind Tgs, Tgyq respectively.
This is purely a presentational distinction however and does not correspond to an actual syntactic
distinction.

At the term level, the classes of small 32 bit and 64 values are notated as sv and fv respectively;
32 bit and 64 bit operations are notated as opr and fopr respectively; and expressions are notated
using the meta-variable e. Note that the distinction between 32 and 64 bit values is a syntactic
distinction and not merely a notational convention, and similarly for operations.

LIL programs (p) consist of a mutually recursive set (d) of heap bindings (hval), and an exe-
cutable expression e. In the theoretical presentation here, code functions are the only heap values

13

K 12:T32|T64|1‘I€1~>I€2|K,1XI€2
| k1ol |5] i | Viin

e,T, ¢ n=x|a|Aak.c|cie
| <Cl,62> |7T10 ’ g C
| injlﬂki] ¢ | case(e, [ag.c1y ...y n.cy))
| fold,;c | pr(j, ok, p:(j — '), 1inc)
| Float | Int | Boxed | Void | X | — | Code
[els] | Aje] 3] V| Rec |V
| Arrays, | Arrayg, | Dyntag | Dyn | Tag

fo n=Xea | T
sv n=ax |l
| inj_union, sv | inj_dyn_(svi, sva)
| unroll; sv | roll; sv
| pack sv as Ja:k.7 hiding ¢ | sv|c] | tag;

fopr = fv | unbox sv | suby(sv1, sv2)
opr = sv | select’sv
| case(sv)(x.e1,...,x.€p)

| dyncase(sv)(sv1 = x1.€1,- =€)

| dyntag, | raise; sv | handle,(ej, z.€2)

| box fv | (s0)

| sv(sD)(fo) | call sv(sv)(fv)

| array, (sv1, sv2) | array,(sv, fv) | sub;(sv1, sv2)
| updy(sv1, sve, fv) | upd, (sv1, sva, sv3)

e = letrec, flagikl, ..., Qb (X171, oo T T) (21201, -« .+, 250)€ ine
| sv|let,x = oprine | letxgs = foprine
| let [, x] = unpack svine | let (3,7) = cine
| let (fold3) = cine
| let (inj; 8) = (¢, sv) ine

hval = coder[ar:h1, ..., anikn| (X171, ooy TiniTin) (2101, - -+, 220k)€
d =€l d,l:7 — hval

P = letrecdine

v = | U T

A t=e | Ajj| A ak

r n=o | ot | Ty weq:0d

Figure 3.1: LIL syntax

14

permitted: however, in practice additional statically allocated data is placed in the heap section.!

The next several sections discuss some of the interesting syntactic aspects of the LIL and
introduce the relevant typing judgements. The complete static semantics for the LIL can be found
in appendix B. Many of the constructs described here are also discussed in detail by Crary and
Weirich [CW99].

3.1.1 Typing contexts

Context judgements
Heap contexts F ¥ ok
Constructor contexts | - A ok
Term contexts AT ok

There are three sorts of typing contexts for the LIL: heap contexts W, constructor contexts
A, and term contexts I'. Heap contexts associate closed types with labels and are derived from
the top level heap of a program. Constructor contexts actually serve two purposes: they bind free
kind variables, and they bind free constructor variables at kinds (which may refer to previously
bound kind variables). In principle these two contexts could be separated, but since kind variables
are uni-typed it seems unnecessary. Term contexts bind 32 and 64 bit term variables at types,
which may refer to previously bound constructor variables. I assume that variables for each of
the different syntactic classes (constructors, kinds, 32 bit terms and 64 bit terms) are drawn from
mutually disjoint infinite sets.

A heap context is well-formed if all of the labels in its domain are distinct, and if each of the
types in its range is well-formed in an empty constructor context. This latter constraint reflects
the fact that heap values are bound at the top-level of programs.

A constructor context is well-formed if all of the kind variables in its domain are distinct; and if
all of the constructor variables in its domain are distinct, and if each type in its range is well-formed
in the context preceding its binding.

A term context is well-formed if all of the 32 bit variables in its range are distinct, each type at
which a 32 bit variable is bound is well-formed at kind T3o; and if all of the 64 bit variables in its
range are distinct, and if each type at which a 64 bit variable is bound is well-formed at kind Tgy.

3.1.2 Constructors and Kinds

Constructor and kind judgements
Kinds A F k ok
Constructors | AFc: &
Equivalence |Atc=c:k

The constructor and kind typing judgements are unsurprising. The judgement A - x ok defines
what it means for a kind to be well-formed in a constructor context A. The judgement A+ c: k

IThe practice of referring to the static data segment of LIL programs as a “heap” reflects the standard terminology
of the literature in this area: however, this usage is slightly misleading since in practice a LIL “heap” is understood to
correspond more closely to the code and data segments of an executable image, rather than to dynamically allocated
heap space. Nonetheless, since this distinction is not apparent in the dynamic semantics of TILTAL, and since the
usage has become standard in the literature, I will continue to refer to this portion of a LIL program as the heap.
Sorry Bob!

15

Constants and their kinds
Float:Tgy Int:Tso Void:Tso

Arraysy:T3s — T3 Arrayg,:Tes — T30 Boxed:Tgy — T390
Tagmat — Tsaa Dyntag:Tg2 — T3 Dyn :T'39
x:T391list — Tgo — :T'30list — Tgglist — T30 — Tgo

\/ :nglist — T32 Code ZngliSt — T64liSt — T32 — T32
V:Vj.(j — Ts2) — Tso AVj.(j — T32) — T3
Rec:Vj.((j — Ts2) = (j = T32)) = j — T

Figure 3.2: Constructor constants and their kinds

defines what it means for a constructor ¢ to be well-formed at a kind & in a context A. And the
judgement A ¢ = ¢ : k defines when two constructors are equivalent. Note that the kind and the
context in the equivalence judgement are present for technical reasons: they should not change the
set of equivalences on well-formed constructors (though they do rule out equivalences on ill-formed
constructors). The complete definitions of these judgements are given in appendix B.

The most important change from the MIL is the enrichment of the kind structure: most
importantly, the addition of sum kinds with corresponding introduction and elimination forms at
the constructor level. Universal kinds (Vj.x) and inductive kinds (pj.x) are also provided. Kind
variables bound by inductive kinds are restricted to occur only positively. In order to provide for
the possibility of more general 64 bit types, the LIL uses an explicit kind distinction, providing
kinds Tss and Tgy corresponding to the kind of the types of 32 and 64 bit expressions respectively.

The meta-variables ¢, 7 and ¢ are used to represent constructors of arbitrary kind, kind Tjo
and kind Tgy4 respectively. The lambda calculus portion of the constructor level contains the usual
introduction and elimination forms for sums, pairs, lambdas, unit, and kind abstraction. These
constructs are entirely standard. Inductive kinds are introduced with a fold construct, fold,;x c,
which injects a constructor ¢ of kind k[uj.</j] into the kind pj.k.

The elimination form for inductive kinds is one of the most complex constructs in the LIL
and requires some explanation. The essential idea is to provide a form of primitive recursion over
inductive kinds at the constructor level. A primitive recursive constructor pr(j, a:x, p:(j — K').c)
recursively defines a function from pj.x to &'[uj.k/j], with the body of the function give by c.
The variable « is the argument to the function, and stands for the unfolded argument (nominally
of kind k[pj.x/j]). However, in order to ensure that the function is only recursively called on a
sub-component of the argument (and hence is guaranteed to terminate), « is bound at kind x with
occurrences of j left abstract, and the recursive variable p always has j as its domain kind.

The constructors classifying the term level are presented in the LIL as constants of higher kind.
These constructors, given in figure 3.2, include constants for impredicative universal and existential
types, general parameterized recursive types, arrays, tagged values, sums, integers, floating point
numbers, boxed 64 bit values, pairs, and functions. Formulating these constructors as higher order
constants makes the interaction with type analysis easier to deal with. The kinds of several of the
constants refer to the kind of lists of constructors. This is defined as list[k] = pj’.1 + &k x 5.
Throughout this dissertation I will frequently use the usual ML list syntax for constructor lists.
The kind nat describing the encoding of natural numbers is definable directly in the LIL in the

16

usual fashion, and is used in the typing rules as well. When n is a natural number, I write n for
the constructor of kind nat representing n.

For the most part, the constructor constants are fairly straightforward. For example, xc¢ cor-
responds to the type of a tuple, the types of the fields of which are given by the elements of ¢. If
¢ = [11, 2], then this corresponds to 71 X 72 in a more standard notation. Similarly, the arguments
to the — constructor correspond to the types of the 32 bit and 64 bit arguments of the function,
and its return type. Hence, —([7])([¢])(7) corresponds to (7;¢) — 7.

This higher-order abstract syntax methodology is very convenient for both the theory and the
implementation but can interfere with readability. For example: the type of the polymorphic
pairing function written in this style appears as

V[T52] (A(:T52).V[T52] (A(8: Ts2). — [al[}(—[b][](%[a, b]))))

(Note that even here I have used derived notation for lists). To enhance readability, I will frequently
make use of more standard notation. So in this example, I would write the type as:

V[CVZT?,Q,ﬁZTgQ].Oc — ﬁ — ((X X ﬂ)

This practice is also done extensively in the actual implementation via libraries which provide
defined forms implementing the more standard type constructors in terms of the HOAS style
constructors.

The Tag constructor classifies sum tags, and takes as its argument a constructor of kind nat
indicating which branch of the sum the value inhabits.

Sum types are dealt with in the LIL using union types. In principle we allow injection into
any union type. However, the case construct limits its arguments to have union types composed
solely of tags or tagged records for which the tags are disjoint, and cover the full range of tags from
the zero to the largest tag. So for example, the type \/[Tag(0), x[Tag(1l), 7]] is inhabited by terms
which are either tag, or a pair containing a 7 in its second field, tagged with tag; in the first field.
This union type therefore describes a valid argument to case. In point of fact, the tag on the pair
is not necessary and could be elided. More generally, when 7 is a pointer, then both the tag and
the pointer indirection can be eliminated. Note though that in the presence of unknown types such
an optimization again requires type analysis. The actual implementation of sums in TILT in fact
performs this optimization. However, since it adds nothing new to the problem, the theoretical
discussion here assumes a simple treatment of sums in which all value-carrying arms are tagged.

The universal and existential constructors take as arguments a kind indicating the domain
of quantification and a constructor function giving the body. The standard V(«a:k).c becomes
V[k](A(a::k).c), and similarly for the existential. Finally, parameterized recursive types are defined
with the Rec constructor. Rec[k](A(p:k— T32).A(a:k).c)(¢’) (where ¢ has kind k) corresponds to re-
cursively defining a constructor of kind xk— Ts2 and applying it to ¢/. Within the body of ¢, p stands
for the recursively defined constructor, and « stands for the parameter. Therefore, the unfolding
of such a type is given by ¢, (A(a:k).(Rec[k](c)(a))) ('), where ¢, = (A(p:k — Ts2).Aa:k).c).

In order to allow closure conversion to be done within the LIL language, two “function” types
are given. The — primitive type constructor when applied to arguments classifies functions in the
usual sense. The Code primitive on the other hand, classifies “code” functions: that is, code that
is closed.

17

3.1.3 Terms

Term judgements
Small values U AT Fsv:T
64 bit values U AT foig
32 bit Operations | U; A;I' = opr: 7 opr,,
64 bit Operations | U; A;I' F fopr: ¢ opry,

Expressions U:A;T'Fe:Texp
Heap values U h:7 hval
Heaps Ut d ok
Programs Uhkp:1

The expression level of the LIL is divided into five syntactic classes: 64 bit values (fv), 32 bit
values (sv), 32 bit operations (opr), 64 bit operations (fopr) and expressions (e). Programs are
syntactically restricted to a named form where all intermediate computations are named in the
usual fashion. In addition to the five classes making up expressions, there are an additional three
syntactic classes making up full LIL programs: heap values (hval), heaps (d), and programs (p).

The well-formedness judgements for the five expression classes are all of the same essential
form, defining what it means for a term to be well-formed at a type 7 (or ¢) in heap context
W, constructor context A, and term context I'. The other three judgements apply to heaps and
programs which do not have free variables of any sort. Therefore, the only context present in these
judgements is the heap context, which describes the free labels of a heap or a program. As usual,
any heap value may refer to the label bound to any other heap value: that is, all the heap values
are mutually recursively defined. The presence of a heap context in the program well-formedness
judgement leaves open the possibility of compiling programs against externally defined labels.

Small values

Values include variables, constants, polymorphic instantiation, and existential introduction. Sum
tags tag, are made explicit, and a coercion is introduced to inject terms into the union type.

64 bit values

The only 64 bit values present in the LIL are 64 bit float constants and variables.

32 bit operations

Operations are computations that return values, and are bound to variables within expressions.
For simplicity, I include values into the operations to unify let binding into a single mechanism.
Other operations include unrolling of recursive types, tuple introduction and tuple selection, boxing,
sum case, known sum projection, exception constructs, and boxing of 64 bit values. Array update
and creation operations are provided for both 32 and 64 bit arrays, along with the array subscript
operation for 32 bit arrays. Note that all memory allocation in the LIL is explicit and present in this
level, whether through the tuple introduction, the box primitive or the array creation primitives.
The only exception to this is function introduction which implicitly allocates a closure: this is dealt
with via closure conversion which turns uses of functions into uses of tuples and code. This is
described in detail in chapter 6 and section 9.3.

18

64 bit operations

The 64 bit operations include unboxing of 64 bit values and 64 bit array subscripts, as well as the
inclusion of 64 bit values.

Expressions

Expressions in the LIL are either small values, or let bindings of any of several forms. Recursive
function binding, 32 bit variable binding, and 64 bit variable binding are provided. Existential
unpacking is also included at this level. The most interesting expressions however, are the type
refinement bindings that support the technology upon which type analysis in the LIL is built.

The most important of these is the vcase, or “virtual case” construct. Crary and Weirich
[CW99] describe a system for implementing type analysis as case analysis on constructor-level
sums, essentially defining typecase in terms of more standard type theoretic constructs. They also
describe a variant of their system which allows for a type erasure interpretation but still supports
type analysis as a programming idiom. In this variant, term-level sums are used to stand for
analyzable constructors. The vcase construct provides a mechanism whereby information about
the identity of types encoded as terms can be reflected back into the type level.

To understand how this works, consider a value v of type case(a, f;.¢c, 32.Void). According to
the type given, v is either of type c or of type Void depending on whether a gets instantiated with
a left or a right injection. But since there are no closed values of type Void, it is apparent that «
can not be instantiated with a right injection, since to do so would imply that v has type Void. In
essence, v serves as a witness to the fact that a will be instantiated with the left injection.

This fact can be propagated back into the type system by using vcase. When the argument
to vcase is a variable, its arms are type-checked with the variable replaced with the appropriate
injection in the context and in the body of the arm (that is, in the left arm, the variable is
replaced with the left injection, and similarly with the right). Therefore, in the second branch of
the expression vcase(q, (31.€, #2. dead v) the value v has type Void, which implies that this branch
cannot be reached and is dead code. Within the body of e, a is known to be the left injection, and
v is known to have type c. When types are erased, it is sound to erase the vcase as well, since one
arm is known to be dead code. The vcase construct is the key to implementing type analysis, as
the subsequent section will show.

In addition, two special binding forms exist for refining constructor paths into variables for
analysis. When « has kind k; X kg, the pair refinement operator let((3,v) = aine replaces all
occurrences of « in e with the pair (3,7). This means that projections from « can be turned
into variables. The vcase construct can only refine the type of its argument when the argument
is a variable: this pair refinement construct allows this to be extended to paths as well. The
let(fold /) = aine expression serves a similar purpose when « has a recursive kind.

Heap values

The only heap values currently supported in the theoretical treatment of the LIL are code functions,
which are necessary for closure conversion. Each heap value is required to be closed with respect
to variables, but may refer to any other heap value via its label.

19

Heaps

A heap is a collection of mutually recursively defined heap values. A heap is well-formed in a heap
context if each of its constituent heap values is well-formed at the type at which its label is bound.
Note that I require that all of the heap labels be present in the heap context: for non-recursive
functions this is not strictly necessary, but it serves the additional purpose of enforcing the property
that all labels in the heap are distinct (via well-formedness check on heap contexts).

F ¥ ok

U I € ok

U[l:7] = hval : 7 hval
Ul:T]) - d ok

V[l:r] F d, &:7 — hval ok

Programs

LIL programs consist of a heap, which binds labels to heap values, and an expression which
computes the “value” of the program. Since the heap values are (potentially) mutually recursive,
the heap is checked in a context including bindings for all of the labels in the heap. For notational
purposes, I define an operation on heaps, ¥(d), that corresponds to the heap context produced by
taking the label and type from each binding in a heap

U(e) def
U(d, b7 — hoal) < B (d), &7

The well-formedness rule for program simply checks the heap and the expression portion of the
program in the heap context extended with the bindings from the heap.

U, ¥(d)F ok¥,VU(d)F dok
U, U(d);e; et e:7 exp

VUt letrecdine: T

3.2 Useful properties of the LIL

Subsequent proofs rely on certain properties of the LIL: in particular, that well-typedness is
preserved under substitution and that weakening for typing contexts is admissible.

Lemma 1 (LIL Substitution)
IfA k' Fe:k and AF ¢k then AF c[d/a]: k.

Proof: (By induction on ¢)
We proceed by cases on the last rule of the derivation.

1. If ¢ is a constant or *, then c[¢'/a] = ¢. By assumption, A, a:k; b ¢: K, so by strengthening,
AFc:k.

20

10.

Ak |Fd ik

e o = a. Then ¢[¢//a] = ¢;. By assumption, A F ¢/: £’ and A, a:r’ F a:x. But by
inspection of the typing rules, it is clear that the derivation must end in a use of the
variable rule, so k = x/, and hence A+ ¢ : k

e o' # a. Then the result follows as in the constant case above.

. Ala:r] = X(B:kg).c: kg — Ky. Then by assumption, A, a:x/, B:kg F c:k,. By induction,

A, B:kg Fcld /o] : ky. (Note that we assume that § is chosen appropriately to avoid capture.)
Then by the lambda rule, A = \(B:x3)(c[c’/a]): k, and hence by definition of substitution,
At (NB:kg)e)[d/a] k.

. Ala:k'] F 1 cg:k. Then by assumption, A, a:k’ F ¢1:k9 — k and A,a:k’ F cy: k. By

induction, A F ¢1[¢//a]: ke — k and A F ¢1[¢//a]: ka. The result follows directly then from
the application rule and the definition of substitution: A & (¢1 ¢2)[¢//a]: k.

. Afa:rk’] F {c1,¢2) 1 k1 X k2. Then by assumption A, «a:x’ F ¢1:51 and A, a:k’ B cg: k2. By

induction, A F ¢1[¢//a]: k1 and A F co[d//a]: ka. The result follows directly then from the
pair rule and the definition of substitution: A F {(¢1,co)[d/a]: k.

Alo:k'] F miep: k1. Then by assumption A, ik’ F ¢p: k X k2. By induction, A - ¢,[¢ /o] : k %
ko. The result follows from the the projection rule and the definition of substitution.

Alo:k'] F macp : ka. As for .

Alo:k'] F inj,e: + [K1,...,Ky). Then by assumption A, a:k’ c:k;. By induction, A -
¢l /a): k;. Finally, by the injection rule and the definition of substitution:

A, k' (inj;c)[d /a): + [K1, -+, k)
Ala:rk'| b casec[(ag.ci, ..., an.cp)]: k. By assumption:
o Ak’ e + [K, ..., Ky

o Aok, aiki ik
By induction:

o At c[d/a]: + [ki,...,Kn]

o Ala;:ki] Feld/d]: K

(Note that the a; may always be chosen to avoid capture). Then by the case rule and the
definition of substitution, A - (case c[(a1.c1,...,an.ch)])[d/a] : K

Aloek'] - foldyj . c: pj.k. Then by assumption, Alcck’] - c: kpj.r/j] and Ala:s'] F pj.k ok.
By induction, Ala:x'] F ¢[d/a]:k[pj.k/j], and so by the fold rule and the definition of
substitution, Alo:k’] F (foldy; . c)[c’/a] : k[pj.k/]]

21

11. Afa:r'| F pr (], B:k1, p:(j — K2), inc) : uj.k1 — k2 Then by assumption,
Alc:k'] = pr(f, B:k1, p:(§ — K2), inc): pj.r1 — Ko

By induction

A, j, Bk, p:(j — k2) Fc[d [a] k2
Note that we can choose variables appropriately to avoid capture, and hence by the primitive
recursion rule and the definition of substitution

Al pr(j, et p:(j — 2), in o) /a] : gy — o

12. Ala:rk'] F c[k] : k2K /]].
Then by assumption:
Ala:k]F c:Vj.ko

By induction:
A Fc[da]:Vj.ke

By the kind application rule and the definition of substitution:
A+ clx][d'/a] : ka[K/]]

13. Ala:k’] F Aj.c:Vj.k. Then by assumption, Ala:x'],j F ¢: k. By induction A, j F c[d/a]: k.
Hence by the kind abstraction rule and the definition of substitution A F (Aj.c)[¢/a]: k.

u
A few structural properties of LIL contexts are important as well. I state the weakening property
and give a sketch of the proof. I remain informal about re-ordering properties of typing contexts
throughout, but in the absence of dependent types or kinds it is straightforward (though tedious)
to formalize them. I will also occasionally informally use simultaneous weakening to combine whole
contexts: e.g. A, A’ where the intersection of the domains is empty. It should be clear that this
form of weakening can also be formalized by an induction on the second context, appealing to the
unary forms of the weakening lemmas to incrementally construct the new context.

Lemma 2 (LIL Weakening)
1. If AF k ok and j ¢ A, then A, j F k ok.

2. If A+ Kk ok and A+ k' ok and o ¢ A, then A, a:x' - K ok.
3. If At c:kand AF k' ok and a ¢ A then A, k' F ¢ k.
4. If Abe=(d:k and AF K ok and o ¢ A then A,o:k' Fe=d ik,

Proof (Sketch): Each of the proofs proceeds similarly by induction on the structure of typing
derivations. For each typing rule, I inductively construct new sub-derivations for each premise and
use the original rule to construct the new derivation. The side-condition on binding sites does not
follow immediately: it is necessary to observe that it is always possible to use alpha-variance to
choose an appropriate bound variable different from «. For premises of the form - A ok, note that
the derivation of = A, a:x’ ok follows directly from the assumptions and the definition of context
well-formedness.

I also state an inversion property of LIL operations.

22

Lemma 3 (LIL inversion)
1. If D is a derivation of V; A;T" - opr: T opr,,, then D has a unique last rule for any choice of
opr.

2. If D is a derivation of U; A;T" = fopr: ¢ opry,, then D has a unique last rule for any choice
of opr.

Proof: By inspection. No two operation rules apply to the same syntactic construct. [

23

24

Chapter 4

Example: Floating point array
fattening

4.1 An optimized array strategy

The use of the LIL type refinement operations discussed in the previous chapter is somewhat
non-intuitive. Before attempting to give a full account of the translation of the MIL, it is useful
to consider a small example demonstrating the type-analysis methodology used in the LIL. The
optimization I will describe here, floating point array flattening, is one of several implemented by
the TILT compiler. In this scheme, an array of boxed floating point numbers is implemented not
as an array of pointers, but as an array of the actual 64-bit values. Polymorphic array operations
dispatch on the type of the array contents to determine which primitives to use. In an informal
AME style notation, this corresponds to defining the following type:

Array,pt (o) = Typecase(a) of Boxed(¢) = Arrayg,(¢)
|- = Arrays ()

As an example, I will show how to write a term level array constructor arrayopt that can be used
to construct such arrays.

4.2 LIL implementation of optimized arrays

Type analysis in the LIL is based on the idea of first encoding types as abstract syntax trees, and
then writing functions that use the encodings to reconstruct the actual types or to choose different
branches of code. In fact, it is not necessary to encode entire types: we may choose an encoding
that captures only the information that is useful for our purposes.

More concretely, we first choose an encoding strategy that captures the features of interest
about a type. For every type of interest (that is, every type which is to be analyzed) we construct
two object level items: a constructor which serves as a static encoding of the type (SE), and a term
which serves as a dynamic encoding of the type (DE). Static encodings of types are used during
typechecking to reconstruct the encoded type and to connect the type to its dynamic encoding.
Dynamic encodings are used to perform the actual runtime dispatch. For each of these two encod-
ings, there must also be a corresponding classifier describing it: the static encoding of a type is

25

classified by the static encoding kind (SEK), and the dynamic encoding of a type is classified by
its dynamic encoding type (DET).

4.2.1 Static encodings

At the kind level, sums and recursive kinds are used to build a type’s static encoding. For the
purposes of this example optimization, the encoding can be very simple: we need only to be able
to distinguish between boxed 64-bit types and other types. This is reflected in the static encoding
kind for our example:

Topt Ty + T (* Boxed of (¢) | Other of (7)*)

The Topt kind classifies static encodings. The comment is meant to suggest the intuitive corre-
spondence between this definition and an ML-style representation of an abstract syntax tree.

Constructors of kind Topt encode types. In order to take advantage of these encodings, we re-
place all constructors by their encodings. For example, polymorphic functions must expect encoded
types as their type arguments. In order to be able to typecheck applications of these functions, we
must be able to reconstruct the original type from its encoding. This is done by writing an object
level function to interpret static encodings into the types they encode. For the example at hand,
this function simply boxes up the 64 bit types and leaves the 32 bit types unchanged. Hence:

interp : Top — T2 of Ma:Topt). casewof inj; § = Boxed(p)
|inj, 8 = 0

The use of this interpretation function can be seen by considering the static encodings of boxed
64-bit floats and 32-bit ints:

T

Cor Topy < inj; P Float
T

Cr *Topt aof inj20pt Int

Notice that the interpretation function maps each of these back to the original type. This allows
us to reconstruct the original type from the encoding. An important point to note here is that
this scheme does not guarantee that all boxed floating point types will be represented as a first
injection: it is perfectly possible to stuff Boxed(Float) into the second arm of the sum. This is not
a problem, since it merely causes arrays of such types to be represented in un-flattened form. In
fact, one could look at this as a feature, since the optimization does not force you to choose one
representation or the other.

Of course, simply writing the interpretation is fairly uninteresting by itself since it merely gets
us back to where we were before we encoded types. The real benefit of encoding types in this fashion
comes from other useful functions that we can write using encodings of types. In particular, the
actual type of specialized arrays that was given informally above can now be written down directly.

Arrayopt:Topt — Ts2 o Ma:Topt). casewof inj; 3 = Arrayg,(S3)
|inj, B = Arraysy(f)

The Arrayqpt, constructor is a function that maps encoded types to optimized array types. It takes
advantage of the additional information present in the encoded types to represent arrays of boxed

26

floats more efficiently. When the encodings are statically known, the optimized array type can be
reduced directly to an underlying primitive array type.

Array,,t(Cpr) = Arrayg(Float)
Arrayopt(Cr) = Arraysy(Int)

When the actual encoding is abstract (for example in a polymorphic function) the composite array
constructor can not be reduced definitively to a primitive array type, since it is not statically known
which sort of array can be expected.

4.2.2 Dynamic encodings

Static encodings account for type analysis at the type level by representing types as constructor
level abstract syntax trees and by writing functions which analyze the structure of encodings to
produce optimized results. Type analysis at the term level is accounted for in an analogous fashion
using dynamic encodings. In addition to encoding every type at the constructor level, we also give
a dynamic encoding of every type at the term level. The DE of a type can then be used to dispatch
at runtime. A key point of this methodology is that the dynamic and static encodings of a type are
not independent: they are related via the dynamic encoding type. This allows information gained
via tests on the dynamic encoding to be reflect back onto the static encoding.

In fact, the DET of a type is simply another object level type function operating on the SE
of the type in the same fashion as the interpretation function and the optimized array functions.
For the example at hand, the type of the dynamic encoding of a type whose static encoding is c¢ is
given by R(c), where R is defined as follows:

R:Topt — Tao aof Ma:Topt)-(case v of inj; B = Unit| inj, 8 = Void)
+(case «of inj; f = Void| inj, 3 = Unit)

This definition is a bit subtle, and is worth examining in detail. The principle high-level point is
that dynamic encodings of types will be values of sum type, which can be dispatched on using the
term level case construct. The subtlety arises in the types given for the two arms of the sum type
here. Metaphorically speaking, each arm of the sum here can be thought of as serving as a “proof”
of the identity of a. The reasoning behind this is to observe that there are no closed values of type
Void. This tells us that any closed value of type casecof inj, f = Unit| inj, f = Void must in
fact be unit. But this in turn tells us (informally) that ¢ can only be of the form inj, 7.

So the informal reasoning of the previous paragraph tells us that after dispatching on the
dynamic encoding of a type, we can informally infer information about its static encoding. In
particular, if the dynamic encoding is a left injection, then the static encoding must similarly be a
left injection; and similarly for right injections. In fact, as we shall see, the vcase constructs gives
us a formal method for using this information.

Dynamic encodings of types are terms whose types are given by the operation of R on their
static encoding. So for example, the dynamic encodings of boxed 64-bit floats and of 32-bit ints
are given as follows:

Ver :R(CBF)
Vi :R(C7)

de ..
= inj;=*
def . .

= inj,*

27

4.2.3 Type analyzing terms

To re-cap, static encodings of types (such as Cpp) provide type level representations of the abstract
syntax of the analyzable types. Dynamic encodings of types (such as Vpp) provide term level
representations of the abstract syntax of the analyzable types, and are classified by types which
depend on the static encoding of the type.

In this framework, functions which analyze types (given in the MIL by special primitives) simply
become functions which take as arguments the static and dynamic encodings of the analyzable types
and dispatch on them appropriately. The type of the function to construct flattened arrays reflects
this:

arrayqgpt : V(a:Topt).R(a) — Int — interp(a) — Arrayqp (o)

The type argument and the first term argument correspond to the static and dynamic encodings
of the type of the contents of the array. The type of the initial value for the array is obtained by
interpreting the encoded type using the interp function, and the return type is given by interpreting
the encoded type using the Arrayqpt, function.

The actual implementation of the array creation function simply case analyzes the dynamic
encoding to determine the appropriate primitive array operation to use. The code itself is straight-
forward: the subtlety lies in understanding why the code is well-typed.

arrayopt e Ala:Topt)-A(@a:R(a)) A(é:Int) A(y: interp(a)).
case I,
of inj, r = vcase« of inj, /1 = arrayg,[01](7, unbox(y))
|inj, B2 = deadr
|inj,r = vcasea of inj, f; = deadr
|injy > = arrayg,[](i,y)

As expected, the type argument « has the kind of encoded types, Topt- Similarly, the term
argument x, has the type of dynamic encodings of «, and will be instantiated with the dynamic
encoding of a. The actual type of the contents of the array can only be referred to via the interp
function, since it is unknown at compile time. Therefore, the y argument with which the array is
to be initialized is given type interp(a). Similarly, the return type Arraygpt(a) gives the type of
the returned array as a function of what « turns out to be.

The key to understanding how this all works out is to observe the effect that the vcase constructs
have on the types of the variables in the function. Consider just the first branch of the case analysis
on Z,, where the body of the arm does a virtual case analysis of a. According to the typing rule
for vcase, the second arm of the vcase will be type-checked with inj, B2 substituted everywhere
for «, including in the context. This means that whereas outside the arm the variable r has type

casea of inj; 3 = Unit |inj,[= Void
within the arm it has type
case inj,fp of inj,;f = Unit|inj,0 = Void

which is equivalent to simply Void. This satisfies the typing rule for vcase, which requires the
dead branch to exhibit a value of type Void as proof that the branch is in fact dead.

28

To illustrate this further, the following table shows the types for the variables r and y inside
and outside of the first vcase, at the occurrences indicated in bold in the definition above.

Outside of vcase

Inside of vcase

y: caseaof 1inj; 3 = Boxed((3)
|inj, 8=

y:Boxed (1)

r:case « of inj;f = Unit|inj,0 = Void

r:Void

As an exercise, the reader may verify that when called with the appropriate arguments, the
optimized array function defined above does in fact reduce to the appropriate 32 or 64-bit array

primitive based on the representation of the type chosen.

arrayopt [Cpr](Ver)(10)(box(0.0)) +—* arrayg,[Float](10,0.0)

arrayqpt[Cr](V1)(10)(0)

29

—* arrays,,[Int](10,0)

30

Chapter 5

The MIL to LIL translation

The translation from the MIL into the LIL language is primarily interesting in that it makes the
uses of type analysis in the MIL primitives explicit and adds representations for types so that this
analysis can be done at the term level. This implements in a typed fashion what is done currently in
an untyped setting. The type analysis methodology for this is essentially the same as that described
in the previous chapter, but extended to handle additional type analyzing operations.

The first section of this chapter gives a high-level overview of the translation, introducing the
relations and stating some of the major typing properties. These translations are developed in
detail in successive sections, along with proofs of their soundness.

5.1 Translation overview

The translation of MIL programs in to LIL programs is defined by several inductively defined
relations between elements of the MIL syntactic classes and their correspondents in the LIL.
These relations may be broadly grouped into four classes: those concerned with the static encoding
of constructors, those concerned with the dynamic encoding of constructors, those concerned with
proper MIL types, and those concerned with the expression translation itself.

The first group consists of the kind and constructor translations, and the corresponding trans-
lation on constructor typing contexts.

Static encoding translations
SEK |k| | ®F |k| ok
SE context | |A| | F |A] ok
SE le| | [A[F |e]: |x]

The kind translation replaces MIL kinds (closed by definition) with closed LIL kinds classifying the
translation of MIL constructors of the original kind. The static encoding translation for contexts
(|A]) simply applies the kind translation across the range of a MIL typing context. This allows
the statement of the desired typing property of the constructor translation: that if A F c¢:k, then
|A|F |c|: |k| (theorem 2). (There are of course a number of other auxiliary typing properties to be
shown: these are covered in more detail in subsequent sections.)

The second group, primarily concerned with the dynamic encoding of constructors, consists
of additional translations on constructors and typing contexts and a relation on constructors and

31

kinds.

Dynamic encoding translations
DET lekl | |Al Hlek| i Tag
DE context | |A] | |A|F]JA] ok
DE le] o; |Al; |AlF|c] ¢ |e:k| exp

The first translation, |c:k|, is a relation between MIL constructor/kind pairs and LIL types. It
defines the dynamic encoding type for a constructor ¢ of kind k. The inhabitants of this type are
the dynamic encodings of constructors, and are produced by a relation between MIL constructors
and LIL expressions: |¢|. The dynamic encoding translation for contexts maps LIL constructor
contexts to MIL term contexts. The domain of the new context is constructed using an injection
from type variables to term variables, while the range is constructed using the static encoding type
translation. It should be the case that if A & ¢: &, then U;|Al; [AlF]e] : |e:k| exp (theorem 3)

The third group is concerned with the translation of proper MIL types (as opposed to con-
structors).

Type translations
Types |7 | |A] F |7]: Tse
Term context | [I'] | |A] - |T'| ok

The type translation is a relation between proper MIL types and LIL constructors of kind T39, and
the term context translation simply maps this translation across the range of MIL term contexts.
It should be the case that if A 7 ok, then |A|F |7]: Tsa.

The final group of translations relates MIL terms of various syntactic classes to their corre-
sponding LIL terms.

Term translations
Small values A;TE svit~ svf U |Af; AL T F sv’ 27|
Float values A:T F fv:Float ~ fv U |Al; |ALIT| F fo' :Float
Operations A;T & opr:7~ opr’ U: |Al; |A]L|T| F opr’:|7| opr,,
64 bit Operations | A;T' F fopr:Float ~» fopr’ | ¥;|Al; JAl, || fopr':Float opry,
Expression A;THe:T~¢€ U |Al; AT F e :|7] exp

It is convenient to phrase these as typed translations since the additional type information is some-
times required in order to construct the appropriate LIL syntax. The intended typing properties
of these translations should be clear. For example, it should be the case that if A;T' F e: 7 and
A;T Fe:7~» € then U; |Al; AL |T| € : 7| exp (for appropriate heap contexts ¥, theorem 8).

5.2 Static encodings of constructors

A static encoding is a LIL constructor which encodes information about the MIL constructor
which it represents. The static encoding can be analyzed at the type level to determine what type
it represents. It can also be translated by an object level interpretation function to determine the
actual LIL type corresponding to the MIL type that it represents. This section develops these
mechanisms, beginning with the translation of kinds.

32

5.2.1 The kind translation

The choice of what information to capture in the encoding depends entirely on the kind of type
analysis optimization that is desired. In the MIL, there are two major uses of type analysis:
an array flattening optimization and the vararg optimization. The array optimization is almost
exactly as described in chapter 4, and requires the encoding strategy to distinguish between boxed
floats and other types. The vararg optimization is described in chapter 2, and requires the ability
to distinguish between records of various widths and other types so that the vararg and onearg
operations can choose an appropriate calling convention. For the purposes of this translation then,
it is sufficient for the encoding to capture three classes of types: records (with their widths), boxed
floating point numbers, and all other