A Module System for LOOM

by

Leaf Eames Petersen

A Thesis
Submitted in partial fulfillment of
of the requirements for the Degree of Bachelor of Arts with Honors
in Computer Science

WILLIAMS COLLEGE
Williamstown, Massachusetts

October 3, 1996



Abstract

A strong module system is a very important language tool for developing software systems.
Classes alone do not allow for sufficient levels of abstraction and separate compilation.
Modules can be very helpful in organizing code, providing abstraction, and supporting
separate compilation. Abstraction makes it difficult to share types between modules, but
transparent types can propagate too much information to allow separate compilation. The
use of partially abstract types and manifest types can help to avoid these problems.

Earlier work by Robert van Gent and Angela Schuett under the direction of Professor
Kim Bruce resulted in the design and implementation of the language PolyTOIL, a type
safe object-oriented language with strong polymorphic features. LOOM is a direct descen-
dant of PolyTOIL which omits subtyping in favor of a more flexible version of matching,
including matching-based subsumption. We give an overview of LOOM and of a prototype
interpreter for the language. Proofs of the complexity of the matching algorithm and the
decidability of type checking are presented. We describe the design and implementation of a
module system for LOOM, and present an in-depth discussion of the issues that motivated
and affected the design process. Formal type checking and semantic rules are given, and
the prototype implementation is described. The module system is evaluated, and proposals
are made for further work.



Contents

1 Introduction

2 Overview of LOOM
2.1 Introduction to PolyTOIL and matching . . . .. .. .. ... .. .....
2.2 Introduction to LOOM . . . . . .. e
2.3 MyType and hash types . . . . .. ... . Lo

3 Some theoretical results
3.1 Matching Complexity . . . ... .. . o
3.1.1 Equivalence . . . . . . ..
3.1.2 Matching . . . . . . . e
3.2 Decidability of type checking. . . . . .. . ... ... .. 0oL
3.3 Lower bound on complexity . . . .. ... ... ... 0L
3.3.1 The extreme case - example of type size blow up . . . . .. ... ..
3.3.2 Practical complexity . . . . . ... L oo o

4 Motivations for Modules
4.1 Programming in the Large . . . . . . . . . .. . oL o
4.1.1 Name-space management . . . .. ... ... ... ... .. .....
4.1.2 Abstraction control . . . . . ..o oo Lo
4.1.3 Separate Compilation . . . . ... ... 0L 0oL
4.2 Module systems in existing languages . . . . . . . .. ...
4.2.1 SML - Transparent Types and Separate Compilation . . . ... ..
4.2.2 Modula-3 - a strong module system . . ... ... ..o L.

5 Language Design
5.1 Abstraction - Partial, Complete, and Manifest Types . . . . . . .. ... ..
5.2 Designing the LOOM Modules . . . . . . ... ... ... ... .. .....
5.2.1  Syntax iSSUES . . . . . i i e e e e e e e
5.2.2 Semantic iSSues . . . . . . .. ..o e e e

-] Ot W W



CONTENTS

5.3 Modular Type Checking . . . . ... ... ..
5.3.1 Definitions . . .. ... ... ... ..
5.3.2 Modular type assignment rules and axioms

5.4 Modular Semantics . . . .. ..o L.

The Interpreter

6.1 Implementation issues . .. ... .. ... ..
6.2 Using the interpreter . . . . . .. .. ... ..

Evaluation of the Language

7.1 Programming in LOOM . .. ... ... ..
7.1.1 Levels of Access . .. ... ......
7.1.2 Friends . ... ...
7.1.3 Problems with the language . . . . . .

7.2 Future Work . . ... ... .o
7.2.1 Multiple interfaces/modules . . . . . .
7.2.2 Parameterization over modules . . . .
7.2.3 Storage allocation on modules? . . . .

Conclusion

8.1 Are modules and classes redundant? . . . ..

Complete grammar for LOOM

A.1 Module Syntax . . .. ... ... ... ...
A2 BaseSyntax . .. ... ... ... .......

Complete type checking rules for LOOM

B.1 Matching rules . . ... ... ... ... ..
B.2 Base language type checking rules . . .. ..
B.3 Module type checking rules . . . .. ... ..
B.4 Algorithmic type checking rules . . . . . . ..

Complete semantic rules for LOOM

C.1 Base language semantics . . . . . .. ... ..
C.2 Module semantics . . . . .. ... ...

Example LOOM programs

D.1 Sets with efficient intersection . . . . . .. ..

D.2 Type functions vs. hash types - A comparison
D.2.1 Points and ColorPoints using TFuncs
D.2.2 Points and ColorPoints using hash types

ii

50
51
54
57

60
60
61

62
62
62
66
67
68
68
70
71

72
72

78
78
79

83
84
84
88
91



List of Figures

2.1
2.2
2.3
2.4

3.1
3.2

4.1
4.2

5.1
5.2
5.3
5.4
5.5
5.6

7.1
7.2
7.3

Hash types in LOOM . . . . . . . o
Type that can be measured and compared . . . . . . ... ... .......
Object type with contravariant MyType . . . . .. ... ... ... ....
Binary method restriction . . . . . . ... ... ... ... ... ...

Classes that can generate exponentially large types during type checking . .
Type blow up during message send. . . . . . . . ... ... ...

Building an efficient set class from an ordered list in PolyTOIL . . .. ..
Transparent typesin SML . . .. .. .. ... o o 0oL

BNF grammar for LOOM modules . . . ... ... ... ... .......
Example LOOM interface . . . . . . .. .. .. o o
Old partial revelation syntax . . . . . . . . ... L o oo
New partial revelation syntax . . . . . . . . . . . . . ... ... ...

B, ./\/liB after type checking interface B . . . ... ... ... ... ....
Example LOOM module . . .. .. ... . o

Modular Sets - Interface . . . . . . . . . . . e
Modular Sets - Implementation . . . . .. ... ... 0L
Abstract sets without modules . . . . . . . . . ... ... . ..

iii

-1 ~1 &

0]

27



Chapter 1

Introduction

Once upon a time, people who talked to computers spoke in binary. Happily, this is for
the most part no longer the case. Even professional programmers can usually ignore the
ones and zeros underlying their code. This is very fortunate, as the type of programs being
written for computers has changed drastically since the days of flipping toggle switches and
watching LED’s. Programming problems these days are better described as engineering
problems than algorithmic problems. For many years, it was feasible to approach each new
program as a distinct entity. By writing each line of code specifically for the particular
problem at hand, programmers would eke out every performance advantage they could to
facilitate running programs on the relatively inadequate hardware. As time passed however,
computers became faster and programs grew larger. It became unwieldy to attempt to
design each program entirely from scratch, and software libraries were developed to provide
common functionalities. Speed of execution became less critical, and issues like development
and maintenance time became important. It became necessary to begin designing programs
around common paradigms and structures. The result of this can be seen in the current
emergence of software engineering as a discipline.

Engineering has been defined as the construction of large, complex structures such as
bridges and buildings through the application of scientific principles. By analogy, software
engineering is the construction of large, complex programs, and if programs are the buildings
and bridges of software engineering then surely programming languages must be viewed as
the bricks from which they are built. It has become increasingly clear over the past decade
that many of our “bridges” are being built with very poor “bricks”. The challenge of
programming language design then is to ensure that the bricks from which our bridges are
built are sound.

The approaches to providing strong language support for large scale programming have
varied widely. The introduction of object-oriented programming was partially an attempt
to deal with this problem, and for the most part, seems to have had a positive effect. Pro-



CHAPTER 1. INTRODUCTION 2

grammers are becoming more and more accepting of the value of the modular facilities
provided by object-oriented languages, and as the use of common libraries of code has be-
come more and more prevalent, the code reuse and organization provided by object systems
has become more and more important. It is not clear though that object-oriented facilities
alone are sufficient to fully address all of the issues that come up in building large systems.
Languages like C++ [ES90] and Eiffel [Mey92] that attempt to support programming-in-
the-large through object systems alone are seeming more and more inadequate to the task.
C++ in particular provides immensely complicated functionality in an attempt to provide
programmers with sufficient flexibility to organize and write their code in a rational way.
In the end, neither language really provides suflicient base language support for large scale
programming. Indeed, it is not at all clear that such support can be implemented using ob-
jects as the only language structure, especially without falling into the C++ trap of ending
up with a system of such semantic complexity that few programmers understand all of its
behaviors.

Another approach to supporting programming-in-the-large is to use the idea of modules.
Languages such as Ada 95,[J0i95] Modula-3 [Har92, Nel91] and SML [Mac85, HMM86] have
provided very different and interesting module systems, frequently in addition to object-
oriented facilities. This approach is interesting because it allows different functionalities to
be assigned to different language features, making the semantics easier to understand and
less likely to interact in surprising ways. Recent years have seen a good deal of theoretical
work being done with modules in an attempt to better understand their nature. This work
seems to be paying off with some very promising results.

We were particularly interested in the use of modules within an object-oriented system.
The language LOOM, developed during the Summer and Fall of 1995 at Williams College
from an earlier language called PolyTOIL, is an object-oriented language that has a number
of interesting and innovative features. However, it did not seem to provide good support
for programming in the large. In an attempt to remedy this, we decided to study the
possibility of layering a module system over the base LOOM language. The design and
implementation of this system is the primary focus of this thesis.

Chapter 2 will continue with an introduction to the base LOOM language and provide
some examples of programming in LOOM. In Chapter 3 we present some theoretical
results concerning the decidability and complexity of the LOOM type checking algorithm.
Chapter 4 continues with a detailed analysis of the motivations for adding modules to
LOOM and introduces some of the issues that will be dealt with throughout the rest of the
thesis. Chapter 5 discusses the central issues involved in the design of the module system
and provides a closer look at some of the more important type checking and semantic
rules. Chapter 6 talks about some design issues in the actual implementation, and gives
instructions for using the LOOM interpreter. In Chapter 7 we evaluate the successes
and failures of the LOOM module system, and present ideas for future work. Chapter 8
summarizes the results, and draws conclusions from the work.



Chapter 2

Overview of LOOM

The programming language LOOM is a descendant of an earlier language called Poly TOIL
[BSvG95]. PolyTOIL is a statically typed object-oriented language that was designed to
be completely type safe while still providing significantly more flexibility than existing
object-oriented languages, such as C++ [ES90], or Object Pascal [Tes85]. It is itself an
outgrowth of two other languages — TOOPLE [Bru94, BCK94] and TOIL [v(G93, Bv(G93]. TOIL
— Typed Object-Oriented Imperative Language — provides the type safety and flexibility of
the functional language TOOPLE in an imperative language. PolyTOIL extends the basic
object-oriented functionality of TOIL with parametric polymorphism, allowing even greater
flexibility in the type system. One part of the parametric polymorphism of PolyTOIL is a
form of bounded quantification based on an idea called matching [Bru93, Bru94, BSvG95].

2.1 Introduction to PolyTOIL and matching

Matching is a relation between types very similar to subtyping, loosely based on the in-
heritance hierarchy of objects. Recall that the subtyping relation, denoted as <:, holds
between any two types of which one subsumes the other: that is, where elements of the
subtype may be treated entirely as being elements of the supertype. The matching relation
is a more general relation that essentially parallels the subclassing relation. An object type
7 matches an object type o if an object of type 7 could have been generated by a subclass
of a class generating objects of type . This relation, originally created as part of the sub-
typing algorithm for TOIL, was chosen as the basis of the bounded polymorphic features of
PolyTOILand proved to be exceptionally well-suited to use in object-oriented programs.
In practice, saying one type matches another is equivalent to saying that any message sent
to an object of the first type could also be sent to an object of the second.!

'Note that this does note hold true for the so called “Hash” types in LOOM introduced in section 2.2
when MyType appears in a contravariant position in the message.



CHAPTER 2. OVERVIEW OF LOOM 4

It is not immediately clear what advantage can be found in using matching over sub-
typing until one considers the interactions of subtyping with another feature of Poly TOIL
called MyType. It can be shown that in order to preserve type safety, an object type 7 can
only be a subtype of another type o if (among other things) all changes in the types of the
parameters of the methods of ¢ occur contravariantly. In other words, for 7 <: o to be true
all parameters to methods in ¢ must be subtypes of their corresponding parameters in 7.
This presents some difficulties when combined with the PolyTOIL type system. Within
the scope of each object, PolyTOIL defines a type identifier MyType that represents
the type of the object itself. This type is “anchored” to the type of the object in which it
appears, so that an appearance of MyType in the type of a method inherited from another
class represents the type of an instance of the current class, rather than the parent class
in which the method was defined. Clearly then, a class which inherits a method with a
parameter of type My Type will exhibit covariant changes in the method’s parameter type
for any non-trivial inherit, and hence any objects generated from the new class will not be
subtypes of objects generated from the parent. In practice, this means that subclasses can
no longer be guaranteed to generate subtypes. As a result, more types can be proven to be
in the matching relation than the subtyping relation.

Interestingly enough, both matching and My Type turn out to be the most central fea-
tures of PolyTOIL. Bounded polymorphism based on matching proves to be a very useful
tool in object-oriented programming: so much so that in programming in PolyTOIL, we
found that it almost completely replaced the use of subtype polymorphism as a mechanism
for producing generic code. The MyType construct on the other hand is very commonly
used to express the type of methods whose type needs to change with the type of the object
in which they appear as they are passed down through inheritance. This appears frequently
with copy-style methods and so-called binary methods — methods whose parameter should
always be the same type as the receiver. These results suggested to us that subtyping might
not be necessary at all. At the same time, we began to feel that presenting programmers
with two separate type hierarchies in a single language might be introducing an unwieldy
complexity into the language.

One of the most difficult decisions to make in designing a programming language is not so
much what features should be included, but rather which features can (should) be excluded.
It is not usually clear from the beginning what parts of a language are truly essential, and
which parts are simply redundant or worse. Ada has long been noted as a classic case
of language overkill - a language which seem to try to support a superset of all possible
language features. This does not really seem to be a sound basis for developing a workable
language. It seems much more reasonable to try to find a small set of powerful features that
can provide all of the functionality needed without unnecessarily cluttering up the language.
In looking at PolyTOIL, we felt that perhaps the language had strayed into unnecessary
complexity. While identification of the subclass/subtype hierarchies in languages such as
Eiffel and C++ frequently introduces significant type insecurities, the resulting simplicity of



CHAPTER 2. OVERVIEW OF LOOM 5

the subtype relation seems to be popular with programmers. The complexity introduced by
separating the inheritance and subtyping hierarchies in PolyTOIL was only exacerbated
by the presence of language features based upon both relations. It seemed like a worthwhile
endeavor to look at the language with an eye for simplification, and given our experience
programming in Poly TOIL it seemed feasible to forego subtyping altogether.

2.2 Introduction to LOOM

The result of these observations was the development of the language LOOM. LOOM
retains the syntax and bounded polymorphic? features of PolyTOIL but completely aban-
dons the subtyping relation in favor of an expanded version of matching. As a whole,
LOOM is a much simpler language than its predecessor. In addition to abandoning subtyp-
ing, we decided not to allow the types of inherited methods to be changed, which simplifies
the language significantly. While this may seem like a step backwards in the movement
towards more flexible type systems, we feel that the presence of the MyType construct
combined with bounded polymorphism provides sufficient flexibility in redefining methods.?
The ability to change the type of inherited methods is of very limited usefulness given the
requirement that domain changes be contravariant, and we have not found a convincing
example that cannot be programmed using bounded polymorphism and the MyType con-
struct.

The one major functionality that we feared to lose in eliminating subtyping was subtype
polymorphism. In object-oriented languages, the ability to have an instance of one type
masquerade as its supertype allows for the definition of data structures and operations that
treat heterogeneous objects with common functionality homogeneously. This is especially
useful for two purposes. The first is for applying functions to subtypes of their intended
parameters thereby allowing functions defined on the supertype to be reused on the subtype.
The second is for allowing the construction of heterogeneous data structures by defining the
type of the elements of the structure to be a common supertype of the various types of
the expected elements. Note that while the first problem can be handled fairly elegantly
with parametric polymorphism, the second is essentially impossible in Poly TOIL without
subtype polymorphism.

Subtype polymorphism in object-oriented languages is usually modeled as a form of
subsumption. This means that if e has type 7 and 7 <:0o, then e can be said to have type
o. In order to support applications requiring the functionality of subtype polymorphism,
LOOM provides a similar idea using matching. However, LOOM requires that types
intended to behave as such be explicitly tagged with the type constructor #. This is very

?Note that unbounded polymorphism has been abandoned in LOOM (see 5.2.2)
Isee appendices D.2.1 and D.2.2 for examples of using bounded quantification and MyType to redefine
method types



CHAPTER 2. OVERVIEW OF LOOM

type measurable = ObjectType get_val:func():integer; end;
comparable = ObjectType greater_than:func(#measurable) :bool end;
integer_nums_class = ClassType
var me:integer
methods VISIBLE
set:proc(integer) ;
get_val:func():integer;
greater_than:func(#measurable):bool; end;
INT_NUMS = ObjectType set:proc(integer);
get_val:func():integer;
greater_than:func(#measurable) :bool end;

const  number_class = class
var me=0:integer;
methods visible
set=procedure(the_num:integer)
begin me:=the_num;
end;
get_val=function() :integer
begin return(me) ;
end;
greater_than=function(comp:#measurable) :bool
begin return(me>(comp.get_val()));
end;
end:integer_nums_class;
var
a_num:INT_NUMS;
b_num:#comparable;
c_num:#measurable;
s :BOOLEAN;
begin
a_num:=new(number_class);
a_num.set(6);
b_num:=a_num.clone();
c_num:=a_num.clone();
a_num.set(5);

s:=b_num.greater_than(a_num); --legal, since INT_NUMS <# measurable
--s:=a_num.greater_than(b_num); --illegal, since comparable !<# measurable

s:=a_num.greater_than(c_num); --legal, since measurable <# measurable
end

Figure 2.1: Hash types in LOOM



CHAPTER 2. OVERVIEW OF LOOM

-~

similar in functionality to Ada’s idea of tagged records [Joi95]. Essentially the idea is that
if e has type 7 and 7 <# o, then e also has type #o. We refer to types of the form #7 as
“hash” types, in reference to the constructor.

For example, note that in figure 2.1, a_num is an object of type INT_NUMS, but since
INT NUMS <# comparable, a num can be assigned to b_num. Either object may be sent the
greater_than message since both match comparable (i.e., both must have at least the
greater_than method). However, b_num may not be sent as a parameter to greater_than,
since comparable does not match measurable. In other words, an object of type #comparable
cannot be guaranteed to have a get_val method. On the other hand, c_num may not be sent
the message greater_than, but may be passed as a parameter to it, since it is guaranteed
to support get_val. In figure 2.2, the type comp_and meas includes the functionality of
both comparable and measurable. As a result, any object to type #comp_and meas could
both be sent the message greater_than and passed as a parameter to it.

type
comp_and_meas = ObjectType
get_val:func():integer;
greater_than:func(#measurable) :bool
end;

Figure 2.2: Type that can be measured and compared

2.3 MyType and hash types

This facility provides most of the original functionality of subtype polymorphism. It allows
us to write heterogeneous data structures (see appendix D) and to write functions that
operate on all objects whose type matches their parameter. However, there is one difficulty
with the hash-type idea that has not been revealed in this example. Consider now the
object type listed in figure 2.3.

At first glance, this seems much closer to what we want to accomplish with the type
comparable, or in general any variable v of type #comparable — that is, specify that

type
comparable = ObjectType
greater_than:func(mytype) :bool
end;

Figure 2.3: Object type with contravariant MyType



CHAPTER 2. OVERVIEW OF LOOM

type
setable = ObjectType set:proc(#mytype) end;

singleClassType = ClassType var x:INTEGER;
methods visible
getx:func() : INTEGER;
set:proc(#mytype) ;
end;

doubleClassType = ClassType include singleClassType
var y:INTEGER;
methods visible
gety:func() : INTEGER
end;

const
singleClass = class
var x=0:INTEGER;
methods visible
set=procedure(other:#mytype)
begin x:=other.getx();
end;
getx=function() : INTEGER begin return x end;
end:singleClassType;
doubleClass = class inherit singleClass
var y:INTEGER;
methods visible
set=procedure(other:#mytype)
begin
super.set(other);
y:=other.gety();
end;
gety=function() : INTEGER begin return y end;
end:doubleClassType;
var
break:#setable;
begin
break:=new(doubleClass);
break.set(new(singleClass)); --run time error!!
end;

Figure 2.4: This example shows why binary methods cannot be sent to hash types

. Note

that the last message send generates a run time error if the type checker allows it to be

sent.



CHAPTER 2. OVERVIEW OF LOOM 9

we want to have v hold objects of any type which supports the greater_than method.
Unfortunately, if #o is the type of an object o then in general we cannot know the type
of MyType when it appears in o, since all we know about the actual type of o is that it
matches o. It turns out that for a method m of o (where o is of type #0), we may safely
send the message m to o as long as all occurrences of My Type in the type of m are positive
(that is, appearing in covariant positions). However, if MyType appears negatively in the
type of m (that is, appears in a contravariant position) we may not safely send the message
m to o. To understand the reasons behind this, consider the example code in figure 2.4.

In the example, singleClass holds a single integer, whose value can be obtained with
a getx method. The object can be set to hold the same value as another object whose type
matches the current mytype using the set method. The second class, doubleClass, extends
the functionality of singleClass to include the integer variable y and a gety method. The
set method has been updated to get the value of y from its parameter. Both of these
classes are perfectly legal in LOOM.

In the body of the program, x is declared to have type #setable. Note that both
singleClass and doubleClass generate objects whose type matches setable, since both
support the set method. Therefore it is perfectly legal to assign x an instance of doubleClass.
However, if we allow the binary message set to be sent to x as shown on the last line of
the program, we can run into a problem. The recipient of set here is an instantiation of
doubleClass, which sends the gety message to the parameter of its set method. Since
the parameter is actually an instantiation of singleClass that does not support the gety
method, this message will fail at run time. This is exactly the type of error that static typing
is intended to prevent. Clearly then, we cannot allow the set message to be sent to objects
whose dynamic type is not completely known. In general, we cannot allow any messages
with MyType parameters (e.g. binary methods) to be sent to hash-typed objects.

This is a fairly significant restriction, since it forces a tradeofl between the ability to
assign different values to a variable and the ability to send those values messages. In general,
hash types allow for heterogeneous data structures, and permit disparate elements with
common functionality to be treated uniformly with respect to that common functionality.
However, they also remove more information than one might expect, and consequently force
binary methods to be denied to elements whose type is not known precisely. Note though
that with subtype polymorphism, we could not even accomplish the first assignment in
figure 2.4 since object types with contravariant occurrences of mytype have no non-trivial
subtypes. As a result, neither of the classes would generate subtypes of setable, and we
would be unable do any kind of subsumption here. With hash types, if the type setable
above included a getx method we would be able to send getx to x safely, or in general send
it any message that did not involve a contravariant MyType.



Chapter 3

Some theoretical results

In this chapter, we present some complexity and decidability results concerning the algo-
rithms used for type checking the LOOM language. In particular, we show that type
checking is decidable and give a lower bound for the complexity of the procedure. This is
particularly important in light of the fact that in general, subtyping for bounded quantifi-
cation is undecidable. [Pie92]. In section 3.1 we present a proof of the complexity of the
equivalence and matching algorithms for LOOM. In section 3.2 we present a proof of the
decidability of the type checking algorithm.

In general, we do not provide in depth discussion of the type checking rules and their
use in this context. The complete set of rules along with definitions for symbols used in
them appear in appendix B. An in depth look at the origin and meaning of the original
PolyTOIL type checking rules, of which these are a direct descendant, can be found in
[BSvG95]. To aid the reader in following the proof, we include here a definition of the
collection of types in LOOM as follows:

Definition 3.0.1 (Types in LOOM) Let V be an infinite collection of type variables, L
be an infinite collection of labels, and C be a collection of type constants which includes at
least the type constants Bool and Num. The type expressions with respect to V and C are

defined as follows:

1. Ift e yUC {COMMAND,UNIT,PROGRAM, L, T} thent is a type expression.
2. If 7 is a lype expression, and 7 ¢ { COMMAND,UNIT, PROGRAM, L} then ref 1

is considered a type expression.
3. If o and T are type expressions, then so is func(o):T.
4. If my,...,m, € L and 1q,...,7, are lype expressions, then {my:T1;...;m,:7,} is a

(record) type expression.

10



CHAPTER 3. SOME THEORETICAL RESULTS 11

5. Leto, 1, and 13, be record type expressions and M1 € V. Then VisObjType(o, (11, T,)),
ClassType VisObjType(o, (Th, 7)), and ObjectType T, are lype expressions. MT is
considered to be a bound variable in the last two type expressions.

6. If T is a type expression which corresponds lo the type of some object, then #71 is a
lype expression.

The matching and equivalence algorithms are in fact quite efficient, and can be done in
polynomial time. Since the complexity of the type checking algorithm primarily arises from
equivalence calls, this would seem to suggest that type checking could also be done fairly
efficiently. However, in section 3.3 we demonstrate that the types of expressions may be
exponential in their lexical size. As a result, while equivalence and matching are polynomial
in the size of the types on which they operate, they are in the worst case exponential in
the size of the expressions generating the types. However, expressions that blow up in this
fashion are relatively rare and contrived. In general, the type checking algorithm performs
very well, as types tend to be linear or at worst polynomial in the size of the expressions.

3.1 Matching Complexity

The matching algorithm for LOOM follows almost directly from the rules given in section
B.1. Note however that these rules rely heavily on the ability to judge two types to be
equal. In the case of LOOM, this is handled as structural equivalence, and there is a
separate algorithm for judging whether or not two types are equivalent. We notate the
relation defined by the structural equivalence rules as =, and say that two types o and
7 are equal if and only if ¢ = 7. We denote an algorithmic query of equivalence for two
types o, and 7 in the type context C as equiv(C, o, 7). In most cases, a matching query
degenerates almost immediately into one or more equivalence queries, so it should not be
surprising that the complexity of the equivalence algorithm is the largest component of the
complexity of the matching algorithm.

3.1.1 Equivalence

The proof of the complexity of an equivalence query proceeds by induction on the lexical size
of the types being checked. We assume for the sake of simplicity that all type abbreviations
are fully expanded and that record fields are stored in a sorted order. As a metric for the
size of a type, we will use its lexical size - i.e. the number of tokens needed to print it out
in entirety. We define a function SZ from types to integers such that SZ(o) denotes the
number of lexical tokens needed to encode the type. Note that in general we will count such
symbols as ClassType as being a single token for counting purposes. This function will be
used for the duration of the proof of the complexity of matching as the metric for type size.



CHAPTER 3. SOME THEORETICAL RESULTS 12

Lemma 3.1.1 is necessary for the proof of equivalence. The lemma says firstly that
alpha converting a type variable to a type variable does not change the size of the type, and
secondly that the alpha-conversion can be done in time linear in the size of the type. We
denote a call to the alpha conversion algorithm to replace s with ¢ in 7 as subst(7, 0, s),
where s is a type identifier and o is an arbitrary type expression. A full proof of the lemma
is omitted, as the lemma follows rather trivially from the algorithm. We do not discuss
the alpha conversion algorithm in detail as it is relatively standard, but the essential idea
is that the tree representing the type is traversed, and each type identifier is examined for
possible replacement. Every time we enter the scope of a new type variable, we check to
make sure that the type identifier being replaced has not been scoped out.

Lemma 3.1.1 (Complexity of Alpha Conversion)
Note that for any type T and type variables r,t the following hold:

o SZ(subst(r,r,t)) =SZ(1)
o TIME(subst(r,r,t)) =SZ(7)
The first follows from the fact that SZ(r) = SZ(t) and the definition of subst(r,r,t). The

second can be seen by noting that every recursion in the algorithm removes at least one
token from T, and never performs any expansion.

Theorem 3.1.2 claims that the complexity of the equivalence algorithm is quadratic in
the size of the types on which the query was made. Note that while this is a fairly loose
bound under the given assumptions, it may in fact prove to be too tight for a full system
involving recursive types, as recursive types do not allow for full expansion. The proof is
structured as a case by case induction on the size of the subtyping query.

Theorem 3.1.2 (Equivalence Complexity)
For an equivalence query equiv(C, o, 1), let:

1. s=8Z(o)+SZ(1)

2. k=|C|
Then TIME(equiv(C,o,7)) < s?+slogk for all o, T, and hence the equivalence algorithm
is O(s* + slogk).

Note that s is a measure of the size of the query, and that &k is a measure of the number
of matching constraints in C. For the purposes of a given equivalence query, k remains
constant since no equivalence rule adds or subtracts matching constraints from C.

Proof. (By Course of Values Induction on s)



CHAPTER 3. SOME THEORETICAL RESULTS 13

1. Base Cases:

(a) if SZ(0) = SZ(7) = 1 then both types are single tokens, and equality maybe
checked in unit time. So

TIME() = 1and
2° s* + slogk (s >2) so

<
TIME() < s*+slogk

(b) if o = L, then s = (1+ S2Z(7)) and

TIME() = TIME(isObjectType(r))

(isObjectType() does at most one lookup in C
and never recurs)

loghk + 1

< s+ slogk

IN

(c) if o ={} and 7 = {} then the query is judged true, so

TIME() =1
< 16+ 4logk (s=4)

(d) if (§2(0) =1and SZ(r) #1land 7 # L) or (SZ(r) =1 and SZ(0) # 1 and
o # 1) then the query is false and

TIME() = 1
22 < s*+slogk (s >2)
TIME() < s*+slogk

2. Ref: equiv(C,ref(o),ref(r))
This essentially strips off a ref constructor from the types and recurs. The proof is
mostly algebra.
let s = S8Z(ref(o)) + SZ(ref(r))

TIME() = TIME(equiv(C,o,7))+1
< (SZ(0) +SZ(1)* + (s — 2)logk + 1 (by induction)
< (SZ(ref(o))+SZ(ref(r) —2)* + (s —2)loghk + 1
< SZ(ref(0)) + SZ(ref(r))* +28Z(ref(1)SZ (ref(0))
—48Z(ref(r)) —4S8Z(ref(o))+4+ (s —2)logk + 1



CHAPTER 3. SOME THEORETICAL RESULTS 14

IN

VAN VAR VAN

(SZ(ref(o))+SZ(ref(r)))* + (s —2)logk +5
—48Z(ref(r)) —4S8Z(ref(0))

but SZ(ref(y)) > 4 must be lrue since

SZ(y) > 1 is always true for all v.

(SZ(ref(o)) +SZ(ref(r)))? — 164 (s — 2)logk + 5
s2 4 (s—2)logk

52 + slogk

3. Bound/Bound: equiv(C,V(t <#v).7, V(s <#v").7")
Two cases of bounded genericity. The equivalence algorithm needs to check the equiv-
alence of the bounds and of the return types.

Define

in

TIME()

VANVANRIVAN

s = SZNV(t<#v).7)+SZ(NV(s<#7). ")
= SZ()+SZ(Y)
"o SE(r)+SZ(r)

subst(r,r,t)

= subst(7',r,s)

TIME(equiv(C,~,7)) + TIME(equiv(C, 7,,T}))

+ TIME(subst(r,r,t)) + TZME(subst(r',r, s))

() + s'logk) + ((s")? + 5" logk) + SZ(r) + SZ(")
(by induction and lemma 3.1.1)

(s")? 4 s"log k) + ((s")2 + 5" log k) + 5" (by def. of s7)

SV (") 8"+ (8 + ") logk

sV (8")2 285" 4 (5" + ") log k

s+ 5"+ (s + ") logk

s* + slogk (s' + s" < s. Note that z* is monotonic)

(
(
(
(s

4. Fix/Fix or #/#: equiv(C,o0 — 7,0 = 7')
Two functions whose formal parameters were declared to be of type ¢ and o', where
either type may be a hash type. The equivalence algorithm needs to check that the
parameter and return types are the same. Note that while the programmer may write



CHAPTER 3. SOME THEORETICAL RESULTS 15

functions that take multiple parameters, all functions are curried internally.

Define
s = SZ(e—->T1)+S82(0' - 1)
s = SZ(o)+S8Z(d)
s = SZ(r)+SZ(r)

in

TIME() = TIME(equiv(C,o,0'))+ TIME(equiv(C,T,T"))
= (§)* +s'logk + (s")? + s"logk (by induction)
< £+ slogk (sinces' + 5" < s)

5. Record: equiv(C,{my:01...my:0,},{my:0}...myg:0oL})
Two records. Since we assume that records are sorted, it only takes unit time to find
the corresponding elements.

Define
s = SZ({myor...my0,}) +SZ({myio]. . .myior})
s = SZ(o1)+SZ(a})
s = SZ({myioy...mu0,)) + SZ({my:oh .. .my: o))
in
TIME() = TIME(equiv(C,oq,07))+

TIME(equiv(C,{ma:02...my:0,},{ma:0}...mp:0o})) + 1
(s")2 + s'logk + (s")? + s"log k + 1 (by induction)
s* + slogk

IN

(as above, by algebra since s’ + 5" < s)

6. VisObjType: equiv(C, VisObj(o, (11, 72)), VisObj(o', (11,73)))
Two internal class representations. The equivalence algorithm must check that each
record field is equal.
Define

s = SZ(VisObj(o, (m1,72))) + SZ(VisObj(a', (1{,75)))
s = S8Z(o)+S2(o)
s SZ(n)+SZ(m)
s = SZ(m)+ SZ(7))



CHAPTER 3. SOME THEORETICAL RESULTS 16

in
TIME() = TIME(equiv(C,o,0'))
+ TIME(equiv(C, 1, 7)) + TZIME(equiv(C, 12, 73))
_ (S/)2+8/10gk—}— (S//)2+S//10gk—}— (S///)2+S///10gk
(by induction)
(S,+S,,+ S///)2 + (S/_I_ S”+ S///) logk
< s+ slogk (' + "+ "< s)

A

7. ObjType: equiv(C, ObjectType o, ObjectType T)
Two object types. Equivalence algorithm strips off the type constructor and recurs

on the embedded records.
Define

s = SZ(ObjectType o) + SZ(ObjectType T)
s = S§Z(o)+SZ(r)

in
TIME() = TIME(equiv(C,o,T))

= (s')? +s'logk (by induction)
< s*+slogk (s < s)

8. ClassType: equiv(C, ClassType o, ClassType 7)
Two class types. Equivalence algorithm strips off the constructor and recurs on the

internal structure.
Define

s = &8Z(ClassType o)+ SZ(ClassType 7)
s = SZ(o)+SZ(7)
in
TIME() = TIME(equiv(C,o,T))
= (s")* 4 s'logk (by induction)
< s*+slogk (s < s)

9. #: eqlliV(a #o, #7—)

Two hash types. Strip away the constructor and recur on the types.



CHAPTER 3. SOME THEORETICAL RESULTS 17

Define
s = SZ(#o0)+ SZ(#7)
s = S8Z(o)+SZ(7)
in
TIME() = TIME(equiv(C,o,T))
= (s")* 4 s'logk (by induction)
< s*+slogk (s < s)
10. Other:

Any pair of types which do not fall under one of these rules are not equivalent.

3.1.2 Matching

The proof of the complexity of the matching algorithm proceeds by induction on the size of
the types in the query. The notation used is essentially identical to that used in the proof
of equivalence complexity in section 3.1.1. Note that most of the matching rules degenerate
explicitly to a form of record extension. We say that a record type o extends a record type
7 (denoted ext(C,o, 7)) if o contains at least everything that is in 7. Extension is also
defined for VisObjType which is simply a triple of records, each of which must be in the
extension relation to their counterpart in order for the triple to be an extensions. Although
the matching algorithm handles extension implicitly, the complexity of the ext() relation
is handled separately for the sake of the proof.

Theorem 3.1.3 (Extension Complexity)

For an extension query of the form ext(C,o,7), let s and k be as defined in theo-
rem 3.1.2. Then TIME(ext(C,0,7)) < s* + slogk and hence the extension algorithm is
O(s? + slogk).

Proof. (By Course of Values Induction on s)

Note that the ext() relation is only defined for record types and VisObjTypes. We
assume for the sake of the proof that records are stored in sorted order. This means that
the complexity of finding all the corresponding elements between two record is linear in the
size of the larger record.

For the duration of this proof, let s = SZ(0) + SZ(7) for any query of the form
ext(C,o,7).



CHAPTER 3. SOME THEORETICAL RESULTS 18

e Record( <#):
For a query of the form ext(C, o, 7) where ¢ and 7 are record types, we proceed by
finding the first element of the 7. If there is no such element, then 7 is an empty
record and the query is true. If 7 does contain a field, say ni:v;, then we move
forward through o until we find an m;: a; such that m; = n;. If there is no such m;,
then the query returns false. Otherwise, we check equiv(C, 71, «;) and recur with the
remainder of the record.

— Base Case:
if o ={my:o1...mg:0r} and 7 = {} where k > 0 then

TIME(ext(C,o,7)) = 1 (by def)
4 (since SZ({}) =2)
2+ slogk

S

>
TIME(ext(C,o,7)) <

— Inductive Case:
TIME(ext(C,{mi:0o1...mi0;...myui0,}, {m/ 7 ...my": 71}))
define

s = S8Z(o;))+SZ(m)
s = SZ{{mit1:0i41. . mpi0n}) F SZ({miy i my on))

by definition,
TIME() = TIME(find(my;)) + TIME(equiv(C,0;,7;))
+ TIME(ext(C,{miy1: 0iq1 ... mp:0n}, {mi 1 Tig1 .. mp: T }))
but note that
1. TIME(equiv(C,0;,7)) < (s')% + s'logk (by theorem 3.1.2)
2. TIME(ext(C, {mit1:0ip1 ... Mp: O}, {1 Tig1 .. g TR }))
< (s")% + s"log k (by induction)
3. TIME(find(m;)) = t assuming that the m; is found. Note that if it is
not, then the entire query fails in time proportional to the length of the first
record, which is certainly O(s* + slogk). Note also that s’ + s” +1i < s.

Therefore ...

TIME < ()2 + s logk + (s")? + 8" logk + i
< (84+8"+0)?+ (s +5" +1i)logk
<

s* 4 slogk (by 3 above)



CHAPTER 3. SOME THEORETICAL RESULTS 19

o VisObjType: This case merely decomposes the VisObjType into its record constituents
and recurs on each of them.

TIME(ext(C,VisObj(o, (11, 72)), VisObj(a', (11,73))))
define

s = S8Z(o)+S2(0)

" SZ(n)+SZ(m)

" = SZ(r)+ SZ(7)

0
Il

by definition,
TIME = TIME(ext(C,o0,0")+TIME(ext(C,T,1]))
+ TIME(ext(C, 2, 75))
< (S/)z —|—5’10gk—|— (S//)z + S”logk—l— (S///)z _I_Sllllogk
(by induction)
< (s’ + 5" + s"’)2 + (s’ + s+ 5”’) log k
< st+ slogk

[
For the proof of the matching complexity, we define a function TransMatch(C, 7) s.t.

o if T is a type variable and
V(t <# 1) € C, TransMatch(C, () = TransMatch(C,7) = o
T otherwise

The use of bounded polymorphism can create chains of type variables in C. The TransMatch(C, )
function finds the upper bound of a chain of type variables. For example if C O {s<#t,t <# 7}
then TransMatch(C,s) = 7. Like the ext() function defined above, TransMatch(C, 7)

is handled implicitly in the actual algorithm, but is separated out for the sake of the proof.

Lemma 3.1.4 (Complexity of TransMatch(C,))

The complexity of the TransMatch(C,) function is O(dlogk) where d is the length of
the longest chain in C. Nole that this follows from the facl that each query to C takes lime
log k, and that the upper bound of the longest chain can be found with d queries to C.

We now have all the tools we need for the proof of complexity for the matching algorithm
itsell. For types ¢ and 7 and given the type constraint system C, we denote an algorithmic
query to the matching algorithm as match(C, 7,0). Note that the matching rule for type
variables in section B.1 expands a type variable to a full type from C. This means that the
complexity of a matching query may depend on the size of a type in C, rather than just
on the complexity of the types in the original query. In general, either of the following to
conditions are sufficient for the decidability of the matching algorithm to hold:



CHAPTER 3. SOME THEORETICAL RESULTS 20

1. V(t <¢t7) € C,t does not appear in TransMatch(C, 7)

2. The matching algorithm never recurs on a substructure of the types in the query.

Note that both rules require that the chain from ¢ to TransMatch(C, 7) not contain any
occurrences of {. This is easy to guarantee with correct alpha conversion. Both of these
conditions are met by the current matching rules.

Theorem 3.1.5 (Matching Complexity)
For a matching query of the form match(C,o, 1), let k be as defined in theorem 3.1.2,
and let b and d be defined as follows.

b = max{SZ(n) | (Li<#n)eC}
d = length of the longest chain in C.
Define SZ'() so that

b+1 if 7 is a type variable.
1y
§2(r) = { SZ(t) otherwise

and finally s = SZ'(0) + SZ(1). Then TIME(match(C,0,7)) < s* + (s + d)loghk and
hence the matching algorithm is O(s* + (s + d) logk).
Proof. (By Cases)
o |:
TIME(match(C, L,7)) = TIME(isObjectType(T))
= logk
e Type Variable \ ObjectType: TIME (match(C,t, ObjectType 7))
let

ObjectType 0 = TransMatch(C,¢)

s = S2'(t) + SZ(ObjectType 7)
= b+ 1+ SZ(ObjectType T)
s’ = SZ(o)+S2(1)

Note that s > s’ + 2 will always be true, since SZ(0) cannot be larger than b.

TIME() = TIME(TransMatch(C,t)) + TIME (ext(C,o,T))
dlogk + (s")* + () log k

(by lemma 3.1.4 and by theorem 3.1.3)
() + (s + d) logk
< (8)* 4+ (s+d)logk

IN

IN



CHAPTER 3. SOME THEORETICAL RESULTS 21

e Type Variable \ Type Variable:
TIME(match(C,s,t)) =1
Query is true if s = ¢, false otherwise.

o ObjectType\ Object Type: TIME (match(C, Object Type o, Object Type 1))
let

s = SZ'(ObjectType o) + SZ(ObjectType 7)

= SZ(ObjectType o) + SZ(ObjectType 1) (by definition of SZ'())
s = S8Z(o)+S2(7)

TIME() TIME(ext(C,o,T))
(s’)2 + (s’) logk (by theorem 3.1.3)

(5)* 4 (s +d) logk (Note s > s')

3.2 Decidability of type checking.

The type checking algorithm closely parallels the type checking rules given in appendix
B.2. The significant differences between the formal type checking rules and the algorithmic
type checking rules are discussed in appendix B.4. We will denote a call to the type
checking algorithm on an expression ezp in the type context C with type assignments E as
typecheck(C,E, exp).

Theorem 3.2.1 (Decidability of Type Checking)
For any expression e given a legal type constraint system C and a legal type assignment
E, a type checking query of the form typecheck(C,E,e) terminates.

Proof. We use the lexical size of the expression being type checked as a metric of the
complexity of each call, and show by induction that all recursive calls are made on strictly
smaller expressions. We do not explicitly show type equivalence and matching queries for
each case, but note that by theorems 3.1.5 and 3.1.2 all such queries must terminate.

e Base cases:

Calls of the form typecheck(C,E,e) where e is one of unit, cmd,integer n,real
n,bool b,string s,id ‘‘name’’, do not involve any recursive calls, and therefore
terminate.



CHAPTER 3. SOME THEORETICAL RESULTS 22

e Function typecheck(C, E, function (v: o) Block)
Let

k= SZ(function (v:o) Block)
SZ(Block)+ SZ(0) + 1
k' = SZ(Block)

Assume typecheck(C,E, exp) terminates when SZ(exp) < k. The type checking
of a function expression involves a recursive type checking call only on the block
of the form typecheck(C,E U {v:0},Block). (Again, while there are several calls
to the equivalence and matching algorithms potentially made here, we ignore them
for the sake of simplicity, since we have already proved that both algorithms are
decidable, and since they are only called a finite number of times.) Therefore,
since k > k', typecheck(C,E U {v:0},Block) terminates by induction and hence
typecheck(C,E, function (v: o) Block) terminates.

e Bounded polymorphic function: typecheck(C, E, function (¢ <# ) Block)
Let

k= SZ(function (t <# ) Block)
= SZ(Block)+SZ(y)+3
k' = SZ(Block)

Assume typecheck(C, E, exp) terminates when SZ(exp) < k. Type checking a
bounded polymorphic function expression involves a recursive type checking call only
on the block of the form typecheck(C U {t <#£ v}, E,Block). Therefore, since k > k',
typecheck(C U {t <#~}, E,Block) terminates by induction and hence
typecheck(C, E, function (¢ <#7:0) Block) terminates.

e Function application: typecheck(C, E, f(M))

Let
ko= SZ(f(M))
= SZ(HH+SZ(M)+1
K= SZ())
K' = SZ(M)

Assume typecheck(C, E, exp) terminates when SZ(exp) < k. Type checking a func-
tion application requires recursive type checking calls on the applied expression and



CHAPTER 3. SOME THEORETICAL RESULTS 23

the actual parameter of the form typecheck(C, E, f) and typecheck(C, E, M). But
note that since k' < k and k" < k, typecheck(C,E, f) and typecheck(C,E, M)
terminate by induction. Therefore, typecheck(C, E, f(M)) terminates.

e Bounded polymorphic function application: typecheck(C, E, f(0))

Let
ko= S8z(f(0))
= SZ(f)+S82(0)+1
o= S2()

Assume typecheck(C, E, exp) terminates when SZ(exp) < k. Type checking a poly-
morphic function application requires a recursive type checking call on the applied
expression of the form typecheck(C,E, f). Since k' < k, this clearly terminates by
induction, and hence typecheck(C, E, f(0)) terminates.

e Record: typecheck(C,E,{mi=e1:71...m, = €,:Ts})
Let

k= SZ{mi=e:m...m, =€,:Tn})

= ZSZ(Q‘) + ZSZ(Ti) + 2n (n identifiers and n “="s)
=1 =1

ki = SZ(e)

K3

Assume typecheck(C, E, exp) terminates when SZ(exp) < k. Note that type check-
ing a record with n fields requires n recursive calls of the form typecheck(C, E,¢;).
Since Vi = 1...n, k} < k, each type checking call typecheck(C,E, ¢;) terminates by
induction, and hence since n is strictly finite, typecheck(C,E,{m; =e;:m...m, =
€n: Tn}) terminates.

e Projection: typecheck(C, E, e.m;)
Let

k= SZ(e.my)
= SZ(e)+2 (1 for., 1 for m)
K = SZ(e)
Assume typecheck(C, E, exp) terminates when SZ(exp) < k. Note that type check-
ing a projection requires a recursive call of the form typecheck(C, E, €). Since k' < k,

typecheck(C, E, e¢) terminates by induction, and hence typecheck(C, E,a.m;) also
terminates.



CHAPTER 3. SOME THEORETICAL RESULTS 24

o Class: typecheck(C, E, class(a: 0, (e: Th, €41 Ty)))
Let

k= SZ(class(a:0, (en: Th, €y 7y)))
= SZ2(a)+SZ2(ep) +S2(e) +SZ(0) + SZ(mh) +S2(1) + 1
K = SZ(a)
E' = SZ(epn)
K" = S8Z(e,)

Assume typecheck(C, E, exp) terminates when SZ(exp) < k. Type checking a class
requires three recursive calls of the type checking algorithm - one for the instance

variables, one for the hidden methods, and one for the visible methods. Since &’ < k

and k" < k and k" < k, typecheck(C!V,E,a), typecheck(CMe" EMeth ¢,) and

Meth pMeth
cMe ,E e

typecheck( ,€,) terminate by induction, and hence

typecheck(C, E, class(a: o, (e},: T, €,: 7)) terminates.

where 'V = C U {MyType <# ObjectType 7},

CMETH — ¢V {SelfType <# VisObjType(c, 1)},

EMETH — By {self: SelfType, close: Func(SelfType): MyType}

e Inherit: typecheck(C, E, class inherit ¢ modifying vy, my;

({v1 = a1:01, Vg1 = Qg1 Ompr }, {M1 = €071, Mpg1 = €n41:Tny1}))

Let
k= &Z(class inherit ¢ modifying vy, my;...
- ({’01 = alli 01, Um+1 = Qm+1: Um—}—l}v {m1 = 6/11 T1, Mp41 = €n41: Tn+1}))
= SZ2(c)+S8Z2(d)+SZ(ap41) + SZ(e}) + SZ(ent1)
+S8Z(0my1) +S2(n) + S2(1p41) + 9
ke = S2(c)
ke = SZ(d)
kam-l-l = Sz(am-l-l)
ke = SZ(e)
k€n+1 = SZ(en-I-l)

Assume typecheck(C,E, exp) terminates when SZ(exp) < k. Type checking an
inherit requires recursive calls on the additions and modifications.! Note now that:

"Note that for the sake of simplicity here we assume a single update and a single extend. It is trivial to
extend this to multiple updates and extends simply by replacing the individual additions or modifications
with records of additions or modifications.



CHAPTER 3. SOME THEORETICAL RESULTS 25

1. Since k. < k, kg <k, K,y
1

2. the calls typecheck(C, E, ¢), typecheck(C!V E, d}), typecheck(C!V ,E, a,, 1),
typecheck(CMeth EMeth ¢!) and typecheck(CMeth EMeth ¢f)
all must terminate by induction.

<k, kg <k,and ke, <k,
1

3. Therefore typecheck(C, E, class inherit ¢ modifying vy, my;
({v1 = al:01, V41 = Qui1:Oma1}, {m1 = €171, Mpt1 = €pq1:Tpy1})) termi-
nates.
where C!V' = C U {MyType <t ObjectType {my:T1;...;Mpy1:Tns1}}s
CMETH — ¢V | {SelfType <# VisObjType({vi:01;...; Vi1 Omat )

{myim; . Mg Taa }) )
EMETH — B {self: SelfType, close: Func(SelfType): MyType,

super: SelfType — {my:7m;...;m,: 7, }}
e New: typecheck(C, E, new(c))
Let

k= SZ(new(c))
= SZ(c)+1
K = SZ(c

Assume typecheck(C, E, exp) terminates when SZ(exp) < k. Type checking a
new of a class requires a recursive type checking call on the class. Since k' < k,
typecheck(C, E, ¢) terminates by induction. Therefore, typecheck(C, E, new(c)) ter-
minates.

o (#)Message: typecheck(C,E, 0 < m)
Let

k= SZ(o<=m)
= SZ(o)+2
K = SZ(o)

Assume typecheck(C, E, exp) terminates when SZ(exp) < k. Type checking a
message send requires type checking the recipient of the message. Since k' < k,
typecheck(C,E, 0 <= m) terminates by induction. Note that we must also do alpha
conversion on the return type (recursively unfolding MyType) which by lemma 3.1.1
also terminates, and hence typecheck(C, E, 0 <= m) terminates.



CHAPTER 3. SOME THEORETICAL RESULTS 26

3.3 Lower bound on complexity

Sections 3.1 and 3.2 show that type checking in LOOM is decidable. Moreover, they present
hope that it is in general possible to do so quite efficiently given the complexity results for
the matching and equivalence algorithms. Note though that the matching and equivalence
complexities are given in terms of the size of the types on which they are called. In general,
the size of types tends to be fairly close to the size of the expression generating them, but
in some cases, several factors can interact to cause the type of an expression to blow up
exponentially. In particular, cascaded message sends can cause types that never appeared
explicitly in the text of the program to be generated and to grow very rapidly with respect
to the size of the expression generating them. In this section, we present an example of this
and discuss the problem in more detail.

3.3.1 The extreme case - example of type size blow up

Figure 3.1 shows an example of classes that can be used to generate exponentially large
types. In the example, G and H are functions from types to types and F is an object type.
Note that in LOOM, MyType is scoped out at every object boundary. As a result,
type functions are the only way to use another object’s MyType in a nested object type.
This ability to alpha convert MyType into another object type through renaming is key
to this example. Similarly, the classes must be defined in functions which are abstracted
over object types and which return the objects generated by the classes to allow objects
of type MyType to be passed in to other classes. Note that we have simplified things
somewhat by not showing the types of the classes. In this example, the class types are only
trivially different from the object types since there are no instance variables in the classes.
Intuitively, we can think of this example as setting up a sort of chain of classes, with each
successive class containing a method m1 which returns an object generated by the next class
in the chain. The last class in the chain (ol) simply returns itself.

This in and of itself is not problematic - note that all of the types are still actually linear
in the size of the classes. However, things get more complicated when we begin sending
messages to instantiations of the original class and begin generating classes and types on
the fly. Figure 3.2 demonstrates the exponential blow up of the type of a cascaded message
send to an instance of the class generated in 03. Note that we combine the message and
function application type checking rules in the message send expansions for the sake of
clarity. In general, the function application rule for functions with unit parameters (i.e. no
parameters) simply removes one lexical token from the type.

In the example, A is a variable holding an instantiation of the class generated by 03. In
the first section, we examine what exactly the type of A is - that is, what F is when it has
been expanded out from its abbreviation. Note that this expansion is entirely the evaluation
of the type abbreviations and type function applications in F. We use the names Fmytype



CHAPTER 3. SOME THEORETICAL RESULTS
type
G = TFunc[T <# Top;U <# Top] ObjectType ml:func(T,U):mytype end;
H = TFunc[T <# Top] ObjectType ml:func():G[T,mytypel] end;
F = ObjectType ml:func() :H[mytypel end;
const
ol = function(T <# Top,U <# Top):G[T,U]
begin
return new(
class
methods VISIBLE
ml = function(x:T,y:U) :mytype
begin
return self;
end;
end) --Class
end; --function

02 = function(T <# Top) :H[T]
begin
return new(
class
methods VISIBLE
ml = function():G[T,mytypel
begin
return ol(T,mytype)
end;
end) --class
end; --function

03 = function():F
begin
return new(
class
methods VISIBLE
ml = function() :H[mytypel
begin
return o2(mytype);
end;
end) --class
end; --function

Figure 3.1: Classes that can generate exponentially large types during type checking

27



CHAPTER 3. SOME THEORETICAL RESULTS 28

let A be an instantiation of class 03() from figure 3.1

A:F
:0bjectType ml:func() :H[mytypel end
:0bjectType ml:func() :0ObjectType
ml:func() :G[Fmytype,mytypel
end
end
:0bjectType
ml:func():0bjectType
ml:func():0bjectType
ml:func(Fmytype,Hmytype) :mytype
end
end
end
We call this expanded version of F by the name BIG

A.m1(Q):(Hlmytypel) [BIG/mytypel
:0bjectType ml:func() :G[BIG,mytypel] end
:0bjectType
ml:func():0bjectType
ml:func():0bjectType
ml:func(BIG,Hmytype) :mytype
end
end
end
We refer to this expansion of H as BIGGER.

A.m1().m1(Q):(G[BIG,mytype]) [BIGGER/mytype]
:0bjectType ml:func() :0ObjectType
ml:func(BIG,BIGGER) :mytype
end
end
We refer to this last expansion of G as BIGGEST

A.m1i().m1().m1()

: (ObjectType ml:func(BIG,BIGGER) :mytype end) [BIGGEST/mytypel
:0bjectType ml:func(BIG,BIGGER) :BIGGEST end

Figure 3.2: Type blow up during message send.



CHAPTER 3. SOME THEORETICAL RESULTS 29

and Hmytype to designate the renamings of the mytype parameters to the type functions.
So for example, in the type function application H[mytypel, mytype refers to the type F.
Inside H however, mytype refers to the type H[F] (or in general, H[T] where T is the actual
parameter to the type function H). Therefore, before mytype can be substituted in for the
formal parameter T, it must be renamed to Fmytype (where Fmytype is a unique type name)
to avoid conflicting with the mytype in H. To make the rest of the example easier to read,
we refer to the fully expanded type of A as BIG. Note that SZ(BIG) = 28, counting all of
the tokens used.?

The second part of figure 3.2 shows the full type of the messages send A.m1(). Recall
that the method m1 from A returns an instantiation of the class generated in 02, with mytype
passed in as the type parameter. Also recall from the type checking rules in appendix B.2
that the inferred type of a message send is the type given for it in the recipient with
the inferred type of the recipient (BIG) substituted in for mytype. The result of this
substitution and expansion is the complete type of A.m1().> We refer to this expanded
type as BIGGER. Notice that even though we continue to refer to BIG by name in BIGGER, it
actually refers to the full expansion of F. Therefore, SZ(BIGGER) = 27+ SZ(BIG), or
SZ(BIGGER)=2xS8Z(BIG) — 1 = 55.

The third part of figure 3.2 shows the full type of the message send A.m1().m1(). As
in the case above, this requires that the type of the recipient of the message be substituted
for mytype in the type of the method. Note however that here, the recipient of the final
m1() message is the object returned by A.m1(), whose type (from the previous section)
is BIGGER. Also note that we have already at this point substituted BIG into the type of
A.m1(). We refer to the resulting type as BIGGEST. Note that SZ(BIGGEST) = 18 +
SZ(BIGGER) 4+ SZ(BIG) = 18 + 3*S2(BIG) -1, or SZ(BIGGEST) = 101.

Finally, consider the last part of figure 3.2. This represents the full type of the message
send A.m1().m1().m1(). Once again we must substitute in the type of the object for
mytype. Note that from the previous paragraph we know that the type of A.m1() .m1() is
BIGGEST. Therefore, we substitute BIGGEST in for mytype and get back the type ObjectType
ml:func(BIG,BIGGER) :BIGGEST end. This is the size of the return type of the function
call as listed. Note that:

SZ(0bjectType ml:func(BIG,BIGGER) :BIGGEST end) =
94+ SZ(BIGGEST)+ SZ(BIGGER) + SZ(BIG)
= 94 (17T+3+SZ(BIG)) +2+SZ(BIG) — 1+ SZ(BIG)
— 25+ 6+ SZ(BIG)

?In general, it is fairly arbitrary which tokens we count, so long as we are consistent and count at least
each token that is essential to the representation. For the sake of simplicity here, we will count every token
used even though it is not clear that all of these tokens are essential to the representation.

 Again, note that we are implicitly applying the function application rule here, since technically, the type
of A.mis a function type which must then be applied to the unit parameter



CHAPTER 3. SOME THEORETICAL RESULTS 30

= 193

Empirically, this is very large. More generally, note that the size of the type is approximately
doubling with every message send. In general, the size of a cascaded message send expression
can be described as roughly kn, where k is a constant and n is the number of cascaded
messages. Given this view of message sends in an example like this, the size of the type
grows roughly as 2.

To look at the problem more abstractly, note that substitution of a full type for mytype
can in fact square the size of the type being substituted into, since the type may be contain
an arbitrary number of occurrences of mytype (specifically, enough so that the size of the
type is approximately equal to the number of occurrences of mytype). Moreover, note that
the application of the method does not necessarily remove significant complexity from the
type, since the bulk of the size may always be made to appear in the return type of the
method (up to an arbitrary point). In general then, for a cascaded message send, we may in
principle square the size of the type after each send, resulting in a final type of size O(22").

Note that the example given relies particularly on the ability to abstract over types to
propagate each mytype to the innermost level of the type. It is not clear whether or not
this is an essential property of examples of exponential type growth, but it seems likely. In
general, without the ability to propagate specific mytype variables through multiple scopes
we cannot propagate expansions through multiple message sends. Note that every message
send must remove all free occurrences of mytype from its type via expansion. Without the
ability to explicitly bind mytype in subsequent scopes, all the complexity introduced by the
expansion must appear only in the current scope, which is removed by the next message
send.

3.3.2 Practical complexity

This a very discouraging result. While type checking is not exceptionally time critical,
exponential complexity is very problematic even on short examples. If this complexity were
to reflect the average complexity of type checking in LOOM, the language would clearly be
impractical for general use. In practice however, examples like this are not at all common
- in fact they are quite difficult to contrive. Generally speaking, the size of types tends to
be linear in the size of the expressions generating them, and type checking proceeds fairly
efficiently. Note too that this problem is not unique to LOOM. Type checking in SML is
also in principle potentially exponential, but is in practice quite manageable. [KM&9]



Chapter 4

Motivations for Modules

4.1 Programming in the Large

One thing that we have avoided dealing with up until this point is the issue of programming
in the large. There are a number of issues that come up in the course of attempting to build
very large systems that are not necessarily addressed by standard programming language
constructs. In essence, it is no longer just programming that we need to support, but rather
program development on a grand scale. Many different languages, particularly in the object
oriented paradigm, have attempted to address this issue, some with explicit extensions to
the language and some without. Languages such as C++4, Smalltalk, and Eiffel do not have
any extra module systems, choosing instead to use classes as the fundamental unit. Other
languages, such as Modula-3 are fundamentally structured around the idea of a module.
Standard ML provides a small typed language on top of the core language explicitly for
handling modular structures. All of these mechanisms are attempts to provide support in
some way for programming in the large. Jones [Jon96] identifies three major issues that a
module system needs to address:

1. The need to provide a way of organizing code into distinct units in a coherent way to
facilitate code and namespace management.

2. Providing abstraction barriers to lessen the dependence of units on the implementa-
tion details of other units and provide language support for control of information
propagation.

3. Providing support for separate compilation, thereby making the development process
easier and making it possible to provide reusable code in libraries without granting
access to the source code.

As these issues were central to our design of the LOOM module system, it is useful to look
at each closely, in the interests of both understanding the issues better, and of understanding

31



CHAPTER 4. MOTIVATIONS FOR MODULES 32

why they are not addressed with existing language features.

4.1.1 Name-space management

Facilities for managing name spaces are one of the most commonly supported modular fea-
tures in current programming languages. It is very important when developing large systems
to have some means of organizing code logically and for controlling the name-space. If the
scope of all or most of the names used in a program is the program itself, then it becomes
quite easy to generate interference between names. This can be particularly troublesome
when trying to combine code written by more than one person into a coherent whole. While
a consistent naming scheme can alleviate this somewhat, it is difficult to maintain a nam-
ing scheme when using code from many different sources without some explicit language
support. Classes provide a fairly reasonable form of name-space management for their own
operations. Methods do not interfere since they are always qualified by the name of an
instantiation of the class to which they apply (although there are some difficult interfer-
ence questions that come up in languages with multiple inheritance). However, the space of
classes, constants, functions, and types remains global in Poly TOIL. Moreover, there is no
real way of organizing the code into logically coherent units - all PolyTOIL programs are
essentially one large unit. This problem is fairly common in object-oriented programming
languages.

Name-space management is an especially crucial issue when it comes to types in Poly TOIL.
Separate types must be provided for both a class and the objects it generates. Despite the
use of a Rapide [KLM94] style type inclusion mechanism, type sections in PolyTOIL pro-
grams tend to be large and unwieldy even for small problems. The name-space difficulties
this causes are not at all insignificant. This seems perhaps unnecessarily confusing, and is
certainly not appropriate for programming in the large - the chances of generating name
conflicts when combining code is significant. Moreover, one common criticism of structural
typing is that there exists a possibility of unknowingly encountering an accidental type
equivalence. While it is not clear that this is as common a problem as it is sometimes
made out to be, it is much more likely to occur in a global environment than in a modular
environment.

4.1.2 Abstraction control

The second issue - providing useful abstraction barriers - is at the same time one of the most
difficult and most interesting of the issues we examined. Relatively few current languages do
this well. For the most part, it has proved very difficult to design an abstraction mechanism
that supports both implementation-independent modules and efficient coding, two things
that are sometimes very much in opposition. The idea is to provide a language facility for
hiding information about the implementation of a unit from clients of the unit. This allows



CHAPTER 4. MOTIVATIONS FOR MODULES 33

changes in the implementation to take place without affecting the rest of the program. To
a certain extent, classes in PolyTOIL can provide this in that the types of the objects
they generate do not contain the instance variables and hidden methods of the object.
This means that so long as two classes provide the same public methods, objects generated
by them are interchangeable (i.e. have the same type), and hence have abstracted away
implementation details. This is not true of most object-oriented languages such as C++
and Eiffel, which allow instance variables to appear in the interfaces and tie subtyping to
inheritance. This approach is in many ways fundamentally limited. It is not clear that two
different implementations can be handled equally well with the same interface, especially
given the fact that even other instantiations of the same class must still only utilize the
public interface.

For example, in figure 4.1 a set class may wish to provide an efficient destructive inter-
section method by taking advantage of its knowledge of the internal representation. The
receiver of the intersect message holds the intersection of the original value of the re-
ceiver and the parameter. In order to do this though, it must grant access to its internal
representation to all users through methods like deleteCur, find, etc. that are necessary
for the efficient implementation of intersection. This means that the object can no longer
guarantee invariants about itself since all users may now get at the representation. Further,
if the internal representation is changed to bit fields, for example, we must either change
the public interface as well or else suffer the gross inefficiency of having to convert the
information to a different implementation every time we use the old set interface.

The problem is really that there is no general idea of type abstraction. PolyTOIL is
based around the idea of structural typing and hence has very limited facilities for using
named types, despite their growing importance in the language. In the original TOIL
implementation, type names were treated entirely as abbreviations for the corresponding
full structural types, with no semantic distinction made between a type name and the
type itself. All type names could be macro-expanded out during type-checking. With the
advent of PolyTOIL however, things became more complicated. PolyTOIL introduced
limited forms of type abstraction in the form of bounded and universal quantification over
types. This means that for certain type names, (specifically type variables), little or no
type information is available during type checking: specifically, in the case of bounded
quantification the system has an upper bound on the type of the parameter, while in the
case of universal quantification the system may only assume that the parameter is in fact
a type. As a result, all type judgments on these types need to be based almost exclusively
on the type name. Making things even more complicated, subsequent modifications to
the Poly TOIL interpreter included the addition of recursive types. With recursive types,
macro-expansion becomes completely infeasible, especially since the nature of the recursive
subtyping algorithm is such that multiple expansions of a type may be necessary before a
judgment can be made.

In short, it is quite clear that named types are already an integral part of the language.



CHAPTER 4. MOTIVATIONS FOR MODULES

OrdListType = ObjectType

first: proc(); --move to the first element (off if empty)
next: proc(); --move to the next elt (off if at end or off)
off: func():Boolean; -- is current elt off end of 1list?
add: proc(Integer); --add an elt, maintaining ordering
deleteCur: proc(); -- current is next elt after deleteCur

contains: func(Integer):Boolean; --is param in list (bsearch)
getCur: func():Integer --get the current element
end;

IntSetType = ObjectType include OrdListType

remove :proc(Integer); --remove an element
intersect: proc(MyType) --receiver contains the intersection
end; --note intersect is destructive!

ListSetClass = class inherit OrdListClass
methods visible
procedure remove(elt:Integer) is
begin
if find(elt) then deleteCur()
end;
procedure intersect(other:MyType) is
begin
first();
other.first();
while (not off()) and (not other.off()) do
if getCur() < other.getCur() then
deleteCur()
elsif getCur() > other.getCur then
other.next()
else
next();
other.next()
end
end -- while
while not off() do
deleteCur()
end -- while
end —- function
end; -- class

Figure 4.1: Building an efficient set class from an ordered list in Poly TOIL

34



CHAPTER 4. MOTIVATIONS FOR MODULES 35

Unfortunately, Poly TOIL does not provide especially powerful facilities for defining named
types. The only place in which named types in PolyTOIL can be defined is in a global type
section, from which all information is exported indiscriminately. There are no mechanisms
for scoping type names, and more importantly, the structural information associated with
type names. This is one of the central issues that we felt we needed to address with LOOM.

4.1.3 Separate Compilation

The last issue we want to address is that of separate compilation. The issue of separate
compilation is very important to software developers for a number of reasons. Firstly,
the time needed to completely compile a large system can be quite large. Generally, the
software development process is characterized by frequent recompilations in response to
small incremental changes in the system, particularly during the debugging phase. If the
entire system must be recompiled every time, this can become unmanageably burdensome.
With good support for separate compilation, it should be possible to make arbitrary changes
to the implementation of a module without requiring recompilation of other modules which
import it, so long as no changes are made to its public interface.

Secondly, there is a desire to be able to use precompiled code from libraries without
necessarily having access to the original source. Most programming these days involves
interaction with at least a few code libraries, and while some of these will be in-house or
public domain code, many will be proprietary. It is important to provide support for doing
this in a reasonable way.

Finally, there is a certain amount of interest in being able to provide composable pro-
grams using modules. Many commercial programs are designed to run under vastly dif-
fering environments, and hence must either be designed to function under all of them, or
else distributed with separate versions for different environments. So for example, in some
environments memory is at a premium and should be conserved even at expense of perfor-
mance, whereas in others the opposite is true. Precompiled modules provide an interesting
take on this by allowing a single program to be made and distributed with several differ-
ent implementations of a module, each satisfying different constraints. The user can then
choose which modules get linked together to form the final program depending on local
constraints. This is also useful for writing portable code. Current software distributions
frequently isolate all operating system specific code into a single module so that specializing
the distribution to a specific operating system is simply a matter of linking the system with
the module for that particular operating system.

PolyTOIL already provides a certain amount of support for separate compilation ver-
tically in the class hierarchy, since we do not need to recompile methods inherited from
super-classes. This means that extensive class libraries could be used without the need to
have the source code available. It is probable as well that classes could be used as a unit
of separate compilation across the class hierarchy. However, we may in general wish to



CHAPTER 4. MOTIVATIONS FOR MODULES 36

provide separate compilation for more than just classes. This is especially true given that
in PolyTOIL classes are first class values, and frequently appear as return values from
functions. There are also issues concerning the granularity of the compilation units that
need to be considered. In general, while smaller compilation units seem to support slightly
more separate compilation, they tend to make significant sacrifices in terms of speed of com-
pilation and the ability of the compiler to perform global optimizations without recompiling
the entire system.

Perhaps a more fundamental problem is that classes are in a sense overspecified for
separate compilation in that any significant change to a class implementation will almost
certainly change its instance variables and hence its type. As a result, any code that deals
directly with classes (even solely to the extent of instantiating them to objects) cannot
be compiled in isolation from the class since classes are aggregates whose size depends on
their implementation. This can be partially avoided by defining functions with the class
to return an object instantiating the class, allowing most client code to avoid handling the
class directly. Specific implementation details tend to be defined by the instance variables
and hidden methods of a class, which do not appear in type of the objects generated by the
class.

To the extent then that we can treat objects as abstract interfaces for the classes that
they instantiate, this is not an overwhelming problem. However, objects must always con-
tain all of the public methods of a class, and it is very frequently the case that a class must
provide public methods returning all or part of its internal structure in order to implement
other functionality with reasonable efficiency, as was the case in figure 4.1 above. In these
situations, in general quite common with objects, the type of the object ends up indirectly
depending on implementation specific details that would otherwise only appear in the class
type. As a result, any significant change to the implementation of the class will almost
certainly change the interface presented by the object, and hence will force recompilation
of all other units in which the object appears. So for example in figure 4.1, IntSetType
includes all of the list methods in its type in order to support efficient intersection, but
consequently must reveal its implementation completely. In general then, while Poly TOIL
certainly provides opportunity for separate compilation, it does not provide the abstrac-
tion necessary to make separate compilation as effective as it should be. It is of little use
to be able to compile things separately if the interfaces from which inter-compilation unit
dependencies are determined change whenever the implementation changes.

4.2 Module systems in existing languages

This problem is not at all specific to PolyTOIL. Most current object-oriented languages
generally use classes as the only unit of modular structure and many seem to suffer from
the same problems. In fact, two of the most common object-oriented languages, C++ and



CHAPTER 4. MOTIVATIONS FOR MODULES 37

Eiffel, suffer from this to an even greater degree. Eiffel has no real concept of a module
beyond the class, and while most C++4 compilers provide a little more through limited
scoping rules between files, C4++ provides weak modular abstraction at best, and does not
strongly enforce what little it provides.

Both languages export instance variables as an explicit part of the class interface, and
have no concept of a separate object type. The complete class definition is the interface
in both languages. As a result, all clients of a class in either language are completely
dependent (from a compilation standpoint) on the implementations of the classes. In C++,
this is made even worse by the fact that classes are aggregates, not pointers, and hence
must have information about their size hardwired into any client code (recall that in C++
classes serve as types for objects, and must specify the makeup of the object in complete
detail) [ES90]. Client code must therefore either be written entirely using pointers, or
else suffer from forced recompilation every time the size of a class changes. In the case of
Eiffel, the usefulness of separate compilation is further compromised by the need (as yet
unimplemented) for global link time checks to insure system validity, meaning that there is
no guarantee that previously compiled code cannot later produce type errors [Mey92].

In general, the support for modular programming provided by these two languages does
not sufficiently address the issues of programming in the large. Neither language provides
any means of using modules to support type abstraction in any advanced sense. Eiffel
does provide a means for creating generic classes, but types may not appear as members
of classes (whereas most strong module systems provide this functionality). All current
implementations of C4++ provide a weak form of generics through the use of special macros
called templates. In general, the behavior of templates is not well defined, frequently
surprising even experienced C++ programmers. Moreover, because templates are simply
defined as macros, they are not actually compiled until they are instantiated, resulting
in both late detection of type errors, and enormous duplication of generated code. C++
suffers further from the lack of any language level conception of dependencies between the
“header” files used as interfaces and their clients. Programmers must use programs like
Make or special compilation environments to attempt to manually express dependencies
between modular units.

4.2.1 SML - Transparent Types and Separate Compilation

The language SML provides one of the stronger module systems available. It is one of the
very few which provide for parameterization of modules over modules, creating in essence
a small typed “module language”. Structures play the part of values, signatures that of
types, and functors serve as functions from “values” to “values”. Programmers can use
these facilities to link together different modules in different ways. This allows large pro-
grams to be written as smaller composable units which can then be combined in different
ways. Unfortunately though, signatures cannot completely represent the type of functor



CHAPTER 4. MOTIVATIONS FOR MODULES 38

signature ModuleSig =
sig
type ;
val eq:t—t—bool
end;

structure ModuleStruct: ModuleSig =
struct
type { — int;
fun eq (a:t) (b:t) = (a=0b);

end;

val numFEqual = ModuleStruct.eq 1 2;

Figure 4.2: Transparent types in SML

parameters, since the full structure of exported types is visible even though the type struc-
ture is not present in the signature. For instance, in Figure 4.2, the type of ¢ is unspecified
in ModuleStg, but is nonetheless visible outside of ModuleStruct, allowing the application
of the eq function to two integers on the last line. Such “transparency” of types in ML
means that the interface of a structure (its signature) is not sufficient for compilation to
take place. The implementations of all structures in the system must be available at com-
pile time. The only way to get around this is to make heavy use of functors, postponing
the binding of structure until the end. This is not especially satisfactory, especially as it
means that many type checking errors cannot be caught until link time. While this lack of
support for separate compilation is consistent with SML’s intended use as an interactive
prototyping language, it has proved to be a significant problem for people trying to build
large systems in SML.[Ler94]

4.2.2 Modula-3 - a strong module system

Probably the strongest currently available module system is that found in the Modula
family of languages - particularly Modula-3. Modula-3 provides excellent facilities for mod-
ular programming including several levels of type abstraction, the ability to write generic
modules, and support for separate compilation. The Modula-3 module system consists of
interfaces and modules. Modules contain declarations and executable code, while inter-
faces specily what declarations are exported by the corresponding module. Unlike SML,
Modula-3 interfaces completely specify all information available to other modules, meaning



CHAPTER 4. MOTIVATIONS FOR MODULES 39

that modules which import other modules only need access to the interfaces of the imported
modules. (The modules themselves can then be compiled in any order.) Moreover, changes
in a module cannot force recompilation of other modules unless changes were made in the
interface as well [Har92, Nel91]. Even more interesting from a language design standpoint
are the facilities provided by Modula-3 for type abstraction.

Of the existing module systems, we were most impressed by that of Modula-3, and much
of the LOOM module design is patterned after the Modula-3 module features (modified
for a language without subtyping). We devoted a significant amount of study to the SML
module system, and while in the end it had relatively few direct influences on the LOOM
modules, it has provided a number of ideas for further work with modules in LOOM (see
section 7.2). In general, the SML module system combines some quite powerful features
with some very significant problems, and it is not yet clear how to retain the one without
the other. We will examine Modula-3 more closely in the next chapter.



Chapter 5

Language Design

The most important part of adding modules to LOOM was making the decisions that
defined the modules and their behaviors. Once these decisions were made, the actual
process of implementing them, while challenging, was conceptually more straightforward.
Making the decisions was frequently an agonizing process of analyzing existing systems and
thinking about the ramifications of each choice. Many different ideas were examined and
discarded. In general, we designed conservatively, leaving more complicated decisions to
be examined in the light of the evaluation of the core system. However, care needed to be
taken to make the core design flexible enough to incorporate later changes. We believe that
to a large part we succeeded with this, and indeed, the module system has already gone
through several modifications, with more planned. In the following sections, we present
some of the issues that went into our choices of type checking and semantic rules, and then
present some of the most important of these rules in the context of an example.

5.1 Abstraction - Partial, Complete, and Manifest Types

Most languages that provide some sort of modular type abstraction mechanism only pro-
vide support for at most two types of type revelation - completely opaque or completely
transparent. We have already seen an example of transparent types in SML in section
4.2.1. While transparent types do cause problems with separate compilation, they also
provide a functionality that is important: the ability to share type information between
modules. If structural type equivalence is used, transparent types can allow for type equiv-
alence judgments to be made between modules. This is very important in building up a
system of modules each of which contains a different set of operations on a single type. The
canonical SML example demonstrating the usefulness of transparent types is a token type
shared between a lexical analyzer and a parser. Clearly there is a functionality here that is
important.

40



CHAPTER 5. LANGUAGE DESIGN 41

Manifest Types

The real problem with the transparent types is not that they reveal too much about the
types - indeed they are used in exactly those contexts where one wishes to reveal the
implementation of the types. The problem is that they are revealed not by the interface, but
by the implementation. One solution to this difficulty is to add this type information to the
interface of the module as explicitly exported information. This allows the type information
to be propagated without violating the integrity of the module abstraction. This kind of
abstraction is is referred to as a manifest type specification, and has been advanced as a
possible solution to the SML separate compilation problem [Ler94]. Modula-3 takes this
approach to exporting complete type information from modules. An interface may contain
declarations of the form TYPE T = INTEGER, TYPE S = ..., etc. Any type importing the
module in which the declarations appear may use all of the information given by the type
declaration. Note that this is distinct from transparent types in that the type information
actually appears in the interface to the module and hence can be used without access to
the implementation module.

Opaque Types

On the opposite end of the spectrum from manifest types are opaque, or fully abstract
types. Opaque types are types that are exported abstractly - no information is given as to
their nature, and all operations on the type must be defined within the scope of the module
where the type is defined. Generally, opaque types behave as unique types, with no other
type than themselves judged equivalent to them, even if there is a coincidental structural
equivalence. Opaque types are typically used in programming abstract data types where
specifics of the implementation are hidden from the client. For example in SML, an ab-
stype declaration produces a type name about which no structural information is known,
and for which the only operations are those defined within the scope of the abstype defini-
tion. Complete abstraction of types is a very important feature of a programming language
since it allows modules to be written in such a way as to be arbitrarily replaceable. More-
over, by guaranteeing that the types are protected from even accidental equivalence with
outside types, there is no way for client modules to accidentally or intentionally violate the
conceptual abstraction of the module. This makes it much simpler to guarantee invariants,
since the only way to create values of the opaque type is through the predefined operations.
In the set example from figure 4.1, we could imagine making IntSetType an abstract type
in a module, defining functions intersect and remove as functions defined in the module
and exported from the interface.

The problem with opaque types is that they frequently provide a stronger abstraction
than we might wish. In particular, there are situations where other modules may need to be
able to perform certain operations on an abstract type that rely only on it having certain



CHAPTER 5. LANGUAGE DESIGN 42

general properties. In an object-oriented paradigm, this might be the property of having a
compare method, or a print method associated with it. In general, anything which has a
print method should be able to be told to print itself, and it seems cumbersome to have to
write and export a function to print a completely abstract type, when all the print function
does is send the print message to the object within the scope of the module. In the set
example, this can be seen with the intersect and remove methods. An implementation of
this as an opaque type would require explicit intersect and remove functions to be exported,
the body of each of which would simply be a single message send. It is cumbersome to have
to write functions to allow access to every method that we actually want to export, just to
be able to hide the ones that we do not wish to export. Note too that methods like print
and compare or intersect are such that their interface almost never changes, no matter
what changes are made to the implementation of the underlying type. On the other hand,
we may still not want to provide free access to the implementations, for all the reasons
described in section 4.1.2. This suggests the need for something stronger than complete
revelation, but more flexible than opaque types - in particular, this suggests the need for
partial abstraction.

Translucent Types

Translucent types, or in general partial abstraction, is the idea of allowing some information
to escape the abstraction barrier while keeping the essential implementation abstract. The
most common means of doing this is to use subtyping to express the partial revelation -
that is, the interface specifies that the abstract type is a subtype of some other simpler
type, allowing elements of the abstract type to be treated as elements of the supertype.
By choosing a supertype that allows only those operations which we wish to be publicly
revealed, we can allow public access without violating abstraction. Returning to the set
example, and ignoring for the moment the fact that in PolyTOIL IntSetType would
have no proper subtypes!, we could declare IntSetType to be a subtype of some abstract
type AbsIntSetType which had only the methods remove and intersect. A client of this
module would then have sufficient information to send remove and intersect messages to
a set, but would have no information about other methods supported by the object. The
programmer would also be free to replace the implementation of IntSetType with any other
implementation that provided the same two methods without any change to the interface.

Modula-3 supports partial revelation for reference types through subtyping constraints
placed on type declarations. What Modula-3 calls opaque types are declarations of the
form TYPE T <:U where U is REFANY, the supertype of all reference types, or ROOT, the
supertype of all object types. Partial abstraction can be achieved simply by providing a
more specific type as the upper bound in the declaration. Somewhere in the program the

'Recall that the contravariant occurrence of MyType in the intersect method prevents IntSetType
from having any non-trivial subtypes. (section 2.1)



CHAPTER 5. LANGUAGE DESIGN 43

complete type of T must be revealed - for every opaque type declaration, there must be
exactly one complete revelation, but it may occur in other modules. A complete revelation
is a declaration of the form REVEAL T = V where V must be a ”"branded” reference or object
type expression. (Branding is simply a way of guaranteeing uniqueness of abstract types
so that the typeCase and narrow facilities cannot be used to defeat the abstraction). In
addition to this partial opacity, Modula-3 also provides a facility for subsequent partial
revelations on an opaque or partially opaque type. This is denoted REVEAL T <: W and
specifies that in the current scope, T may be treated as being “at least” W. In general there
be any number of these partial revelations, with the restriction that all of the revealed
supertypes be linearly ordered by the <: relation, and that for all such Ws, V <: W must
hold [Nel91].

5.2 Designing the LOOM Modules

The process of designing programming language features involves a good deal of feedback
between syntactic issues and semantic issues. It is not clear at all that the syntactic design
can or should precede the semantic design of a language - rather it would seem that the
two are intrinsically linked. Indeed, throughout the design of LOOM, syntactic choices
were primarily attempts to express the intended semantics in as intuitive a way as possible,
and hence are in some ways a direct outgrowth of the semantics. On the other hand, the
semantics themselves were designed with a certain syntactic elegance in mind. In general,
while for the sake of clarity we introduce the LOOM module syntax before we attempt to
describe the associated semantic properties, the reader should keep in mind that many of
the syntactic decisions are best understood in the context of the intended semantic meaning.
Throughout this section, we assume familiarity with the base LOOM language as described
in chapter 2. The syntax, typing rules, and semantics of LOOM are given in entirety in
appendices A, B and C.

5.2.1 Syntax issues

The syntax of the LOOM modules (figure 5.1) is a fairly straightforward extension of the
original PolyTOIL syntax. Excluding the module syntax, the only significant syntactic
change to the existing language is that identifiers can now be path names, where a path
name is a simple identifier qualified by an interface name. The standard notation for path
names is generally the module name, followed by a connective, followed by the element
name. So for instance in SML a function f from structure A would be designated as A.f.
For the LOOM modules we avoided the “.” notation to avoid confusion with message
sending, and instead borrowed the C++ scoping syntax, making the above A: :f. This idea
of qualification of names is one of the fundamental aspects of namespace management in
modular programming: that clients of a module have access to elements of the module only



CHAPTER 5. LANGUAGE DESIGN

Module

Interface

Implementation

Program

ImportList

DeclList

Revelation

PartialRev

Assertion

ConstList

IdList

PathName

Interface | Implementation | Program
Interface <id> ImportList DecllList end

Module Implements <id> ImportList;
Type AbbrevList Const ConstList end

Program <id> ImportList AbbrevList UnitBlock
Imports IdList; | ()

Revelation; DeclList | ()

PartialRev | Assertion

<id> <# TypeFzp

<id> = TypeEzp |
<id>: TypeFEzp

<id> = Fzpr: TypeLxp
<id>; IdList | <id>

<id > | < inter facename >:: < id >

Figure 5.1: BNF grammar for LOOM modules

44



CHAPTER 5. LANGUAGE DESIGN 45

Interface B imports A;

T = INTEGER
S <# ObjectType m: proc(A::T); end
f+ func():T

end

Figure 5.2: Example LOOM interface

through full path names, constraining the problem of avoiding name conflicts to within a
single module.

In LOOM, all paths are referenced relative to interfaces as opposed to implementation
modules, unlike SML which uses the structure name to qualify identifiers. This reflects
the fact that in SML, signatures play a role closer to types of accessible values, whereas
in LOOM, clients never deal with implementation modules directly. As a result, SML
can allow multiple structures to implement a single signature, allowing parameterization
over modules in a more powerful and syntactically elegant manner. Modula-3 supports
similar functionality through generic modules parameterized over interfaces, but the result
is a fairly cumbersome mechanism [Har92]. On the other hand, restricting modular access
to interfaces makes it much easier to compose modules into programs without relying on
specific implementations, since the name of the implementation of an interface need never
appear anywhere else in the program. To get the same effect in SML requires the pervasive
use of functors to bind specific implementation structures to general structure names used
pervasively throughout the rest of the program. In LOOM, we have chosen to restrict
access to modules to be through interfaces. In fact, in the current design, there is no way
to bind an implementation to a name. Implementations simply specify which interface
they are implementing. In section 7.2 we will discuss possible extensions to the LOOM
module system that would require the ability to name implementation modules, a relatively
straightforward syntactic change.

The syntax for the module system itself is relatively simple. Most of the new syntax
appears in interface modules, where it is necessary to allow new kinds of declarations not
previously available in Poly TOIL. Figure 5.1 gives a BNF grammar for the module system.
Words in boldface are language keywords. In general, Modules can be interfaces, imple-
mentations, or programs. Implementation modules specify an interface to implement, an
optional list of interfaces to import, an optional list of type definitions, and an optional list of
constant definitions. Program modules essentially retain the syntax of original Poly TOIL
programs, with the addition of an import list. An example of an interface module appears
in figure 5.2. Interface modules consist of a name, an import list, and a list of revelations.
A revelation is an expression of partial or total information about the nature of an identifier



CHAPTER 5. LANGUAGE DESIGN 46

exported by the interface. The types of exported constants are always totally revealed -
their full type is given in the interface. Indeed it is not clear what it would mean for a
constant to be partially revealed. Note however that the type of an exported constant may
include names of partially revealed types. Example 5.2 gives an example of a constant, f,
exported in an interface. The other two revelations in the figure refer to types exported by
the interface. Exported types may be fully revealed by specifying that they are equal to
another type, as with type T from figure 5.2, or partially revealed by specifying that they
match another type, as with 5.

These revelation mechanisms provide an expressive way of specifying the properties
of a module. The one remaining difficulty with the syntax arises with partially revealed
parameterized types. Figure 5.3 shows such a revelation as it would appear in the old
notation for parameterized types. The intent of this example is to define a type that when

U = ObjectType m: proc(); end
S <# TFunc[T <4 U]ObjectType f: proc(U); end

Figure 5.3: Parameterized types with partial revelation: Old syntax

ST <# U] <t ObjectType f: proc(T');end

Figure 5.4: Parameterized types with partial revelation: New syntax

instantiated as S[r] will match any type of the form ObjectType f: proc(r); end. This
intended semantics is not at all clear from the syntax which seems to imply a higher order
matching relation defined over functions from types to types. To resolve this, the syntax for
parameterized types changes in LOOM to that of figure 5.4. This syntax suggests the idea
that the matching relationship is defined over instantiations of the type function, rather
than the type function itself. This syntax change has not yet been implemented in the
interpreter, but we do not expect significant difficulties in the transition.

5.2.2 Semantic issues

The semantic issues in the design of LOOM were the most interesting and difficult to deal
with. It is still not clear what the best ways of handling some of these issues are, even
where a general direction is visible. There are a significant number of tradeoffs involved in
the choices made here, and it will be interesting to see how the choices made bear up under
pressure of actual programs.



CHAPTER 5. LANGUAGE DESIGN 47

Transitivity of import

In SML, all structures occupy a global namespace. Any structure can reference elements
of another structure simply by giving its full path name. In some ways, this is a nice fea-
ture in that it removes the burden of specifying for each structure what other structures
it uses. In general though, this kind of system has some very undesirable results. Making
the programmer explicitly list which modules are used by a module helps both to docu-
ment dependencies between modules for clients and other programmers, and to express the
module dependencies to the compiler. This makes separate compilation much easier, and
more powerful, since the compiler can know ezxactly which modules are dependent on which
others. We therefore decided to make modules completely opaque to modules that do not
import them. This then raises the question of exactly how import should behave.

We say that import is transitive if when module C imports module B and module B
imports module A, C has access to A as if it had imported it explicitly. A transitive module
structure makes for shorter import lists, since it is not necessary to re-import modules
imported by other modules. Note too that if a type t from module A appears in the type
of a function f imported from B, C must import A either directly or indirectly in order to
make use of f. It is quite common for types from modules to appear in several cascaded
modules - consider a node module imported by a list module which is in turn imported
by a client module. On the other hand, transitive import can end up bringing unwanted
elements in with needed elements. Generally speaking, transitive import tends to clutter
the namespace unless a selection mechanism is provided, while intransitive import tends to
force ungainly import lists.

Our feeling in designing the modules was that transitive import is a more intuitive idea.
It is very counter-intuitive to be able to import functions which have types which are not
importable from the same module. For this reason, we chose to make imports transitive,
with the intention of providing a mechanism for either selective import, or selective export.
A selective import mechanism would be essentially a from list within an export list, allowing
a client to specify exactly what things should be imported from the parent module. This is
useful even in normal usage, since clients may not need everything provided by the parent
anyway. An equally interesting possibility is to allow a module to specify which things from
its imports it wishes to export. This is very nice because it removes the burden of finding
out exactly what imports are necessary from the client module. The parent module specifies
those things which a client will need in order to make use of it and the client simply does
a complete import.

Export Rules and Type Equivalence

Another interesting design problem is the question of exactly what things should be exported
from a module and how they should behave. This proved to be the most interesting and



CHAPTER 5. LANGUAGE DESIGN 48

challenging question of the design. The constraints of separate compilation require us to
allow other modules to use only information presented in the interface, but the question
remains of exactly what can then appear in the interface. Many languages, such as Modula-
3 and Ada allow programmers to include blocks of executable code within the scope of the
module, with the intention that it be run when the program starts executing. So for example
in Modula-3, every module ends in a possibly empty block which performs initialization for
the module. The module blocks are guaranteed to execute such that no module is initialized
before any of its imports. (Since this refers only to implementation modules, the ordering
is guaranteed to be acyclic) [Har92, Nel91]. Similarly, many languages also permit modules
to contain runtime variables as members.

In general, we could not come up with any sufliciently convincing arguments for allowing
variables or executable sections in modules that could not be easily addressed with objects.
While there are a few problems that might benefit particularly from being able to hold state
as part of a module, we felt that the added complexity was unwarranted at this stage. As
a result, LOOM modules may contain and export constants and types only. In section 7.2
we discuss the possibility of adding some of this functionality.

Constant export is relatively straightforward, with the type of the constant appearing
in the interface as it appears in the implementation module. In figure 5.2, the constant £
is exported as a function that returns an element of type T. Similarly, the type T is being
exported as the type INTEGER. Throughout the body of the implementation of the module,
and within the scope of any import of B, T will be equivalent to the type integer. Notice
that this use of types is essentially equivalent to the old PolyTOIL notion of type names
as abbreviations for full structural types. This is not the case for translucent export.

The example on the second line of figure 5.2 is an example of the adaptation of the
partial abstraction mechanism of Modula-3 to LOOM, a language without subtyping. In
this example, S is declared to be a type that matches ObjectType m: proc(A::T); end.
Thus, any module importing this interface knows of the existence of S, and knows that S
contains at least the method m. Clearly then, objects of type S may be sent the message m,
and may be assigned to variables of declared type S. Less obviously, objects of type S may
be assigned to variables of any type #7 such that ObjectType m: proc(A::T); end <# 7.
Semantically, the type S is defined to be unique: that is, outside the context of the module
implementation, it may only be judged equivalent to itself.? In other words, we must
use name equivalence rules for type equivalence judgments on translucent types since we
have no way of knowing the actual type. However, a translucent type can be judged to
match another type by transitivity since we have an upper bound on the type. Outside
of the module, clients are aware of both the existence of S and of the existence and type
of a subset of its methods and hence can operate on it in nontrivial ways independent of

?Note though that any type that is defined to be § in a manifest type specification may still be judged
equivalent to S, since a manifest type specification is semantically equivalent to type abbreviation.



CHAPTER 5. LANGUAGE DESIGN 49

predefined operations within the body of the module. Within the implementation module,
there must appear a complete definition of S of the form S = W for some type expression
or type name W.> Within the scope of the module body, S may then be treated as a type
identical to W, allowing structural equivalence to hold within the module scope.

This is a very important result, because it allows interaction between partially abstract
types and the other abstraction mechanisms of LOOM. In particular, translucent types
can be used with forms of bounded quantification such as hash types and bounded poly-
morphism. The fact that we can make matching judgments based on the upper bound also
allows for message sends to objects of the translucent type. Recall that message sends are
type checked by the rule

C,Etr oy, Ck~v<#ObjectType{m:7}
C,EF o< m:7[y/MyType]

MSG

If o (from figure 5.2) has type B::S, then by the rule above, sending a message m to o requires
only that we be able to prove that B::S <# ObjectType m: proc(A::7); end. Given the
upper bound on S from the interface, this is easy to show. As a result, any method name
that appears in the upper bound of S may be sent to elements of type S.* This provides a
great deal of flexibility to programmers.

In PolyTOIL, there is also a notion of stronger abstraction. PolyTOIL allows un-
bounded quantification of type parameters to functions, essentially providing the ability
to write completely generic functions or methods. While it may not be immediately clear
what purpose this serves, it is in fact fairly useful for defining functions that return classes
implementing generic containers that do not require any functionality from their elements.
In the original LOOM design, we included a form of opaque export based on this idea. This
allowed types to be exported completely abstractly, so that the only operations defined on
values of such a type were those defined within the scope of the module in which the type
was defined. In general however, it does not seem that completely abstract types like this
can be supported easily in the presence of true separate compilation, since the possibility
that the actual type is a class® precludes the possibility of determining allocation needs
based solely on module interfaces. While it is possible that this could be implicitly trans-
lated to indirect references heap allocated variables, this seems difficult at best. Modula-3
avoids this problem by supporting opaque types as subtypes of REFANY (see section 5.1).
Client modules therefore need only allocate space for a pointer. While LOOM does not
support pointers, recall that all objects inherit from (and hence match) the common su-
perclass Top. This allows an essentially completely generic object type to be exported by

®This does not mean that the definition of W must be visible: it is possible that W is imported abstractly
from another module.

“Note the difference here from an existentially quantified # type (section 2.2, section 2.3) to which even
messages that appear in the supertype may be refused if My Type appears in the upper bound.

5The only direct (non-pointer) aggregate type in LOOM



CHAPTER 5. LANGUAGE DESIGN 50

simply exporting it as matching Top. It would also be possible to simply restrict the use of
completely opaque types to non-class types, but in general this seems rather arbitrary, and
does not add much in the way of functionality.

Scoping/Naming Rules

An important component of the usefulness of modules is that they resolve namespace con-
flicts. As long as interfaces are guaranteed to be unique, anything defined in a module has
a unique name, called its path name, composed of the name of the interface from which it
is imported and the name given to it within the interface. This is very nice in that it both
guarantees uniqueness of names and also allows names to carry information about their
origin. However, these path names tend to be more cumbersome than simple names. To
alleviate this somewhat, we permit elements to be denoted by their simple names within
the scope of the interface and module in which they are defined. Since all other names
must be path names, we still can never run into naming conflicts. Note though that as a
result, types that contain simple names in an interface may appear differently when they
are used in other modules where the full pathnames must appear. So for example on line
three of figure 5.2, the constant f and its return type T appear as simple names, but any
client module would have refer to f as B::f, and would perceive it as returning an element of
type B::T. Eventually, we would like to consider adding facilities for importing elements of
a parent with specific simple names. However, this raises a number of extremely non-trivial
issues when combined with transitive import, particularly if we allow the client to choose
names for the imported elements. For example, if a module gets a copy of the same type
name from two different imports (transitively), one or both may be renamed. It is in general
somewhat difficult to arrange things so that renamings remain transparent after the first
abstraction. In general it is to be desired that no amount of renaming should ever render a
type unable to be judged equivalent to another version of itself.

5.3 Modular Type Checking

In PolyTOIL, type checking essentially was a two stage process - inferring a type for an
expression from the type of its sub-expressions, and checking that its type was a subtype
of its declared type. This two stage process carries over into base language of LOOM.
Where the LOOM type-checking process diverges significantly is in type checking modules,
where the additional level of abstraction brings in a corresponding additional level to the
type checking. In LOOM then, the type-checking process may be viewed as a three stage
process in which first the types of constants are inferred, then checked against their declared
types, and finally used to help check that the module in which they are defined is consistent
with the interface it purports to implement. The idea of course is to maintain a buffer
between implementation modules and clients. Since all a client module has available to



CHAPTER 5. LANGUAGE DESIGN 51

it is the interface of its imports, it depends on the actual implementation of the module
being consistent with the interface. So long as this true, the information in the interface is
sufficient to guarantee that no run-time type errors will occur.

5.3.1 Definitions

More formally, we may think of a system of modules as being type checked in the context
of a type revelation system that keeps track of type information shared between modules.
Recall from the type checking rules for PolyTOIL [BSv(G95] that we define two sets of
relations, C and E to maintain information used during type checking. C and E are used
for determining the context of a type. The following is a formal definition of C, the type
constraint system.

Definition 5.3.1 (Type Constraint System) Relations of the form o <# 1 where o and
T are type expressions, are said to be type constraints. A type constraint system is defined
as follows:

1. The empty sel, €, is a type constraint system. In general we will denote an empty type
constraint system as C,.

2. IfC is a type constraint system, T is a type variable or a type of the form ObjectType(Mytype)o,
and t < 1 is a type constraint such that the type variable t does notl appear free in C
or 7, then C'U{t <# 1} is a lype constraint system.

So, C keeps track of matching constraints placed on type variables in the current scope. E
holds variable names and the types associated with them. The formal definition of E is as
follows:

Definition 5.3.2 (Type Assignment) A type assignment E is a finile set of associations
between variables and type expressions of the form x: 7, where each x is unique in E. If the
relation x: 7 € E, then we write E(z) = 7.

It is also necessary in LOOM to maintain an equivalence table of explicit type nam-
ings, denoted ST. In general this simply holds the relation between names and the types
associated with them, but note that it is not simply possible to expand out names fully at
any point, particularly in the presence of recursive types. We define an equivalence table
as follows:

Definition 5.3.3 (Equivalence Table) Relations of the form t = o are type equiva-
lences. An equivalence table is defined as such:

1. The emply set, €, is an equivalence table. In general we will denote an empty equiva-
lence table as ST,.



CHAPTER 5. LANGUAGE DESIGN 52

2. If ST is an equivalence table, T is a type, t is a type variable that does not occur in
ST, andt = 7 is a type equivalence, then ST U{t = 7} is an equivalence table.

This then gives us the ability to keep track of type assignments, type constraints, and
type equivalences. We define a type revelation system, denoted M, in terms of these
constructs as follows:

Definition 5.3.4 (Type Revelation System) For names e,t and types 7 and o, decla-
rations of the form

e c:o
o L<#HT
o l=1

are said to be type revelations. A type revelation system M is defined to be a triple

(C,E,ST), where C is a lype constraint system, E is a lype assignment, and ST is an

. . C E ST
equivalence table. We define funclions <, <, and < as follows:
1. The triple M, = (C,,E,,ST,) is a type revelation system.

2. If M = (C,E,ST) is a type revelation system, C' = CU{t < 7} is a lype conslraint
system, and t ¢ ST then M & (t<#tTt)=(C',E,ST), and M' = (C',E,ST) is a type

revelation system.

3. If M = (C,E,ST) is a type revelation system and E' = E U {e: T} is a type assignment,
then M & (e:7) = (C,E',ST), and M' = (C,E',ST) is a type revelation system.

4. If M = (C,E,ST) is a type revelation system, ST' = ST U{t = 7} is an equivalence
table, and t ¢ C then Mﬁ(t = 7)=(C,E,ST"), and M' = (C,E,ST') is a type

revelation system.

Interface modules generate type revelation systems which can be used by other interface
and implementation modules to define the initial contexts in which their internal bodies
are to be type checked. When an interface module is type checked, it generates two type
revelation systems - one corresponding to information which is revealed to a client module,
generally notated M°®, and one corresponding to information which is revealed only to
modules which wish to provide implementations for the interface, generally notated M:.
When we are processing a list of declarations, we use the notation decLst ~> (Me, ./\/lZ) to
indicate that the declarations in decLst reveal the information in M® and M®.

In a system with complete transitive export, this distinction becomes essentially syn-
tactic - the only difference between the revelation system seen by a client and that seen



CHAPTER 5. LANGUAGE DESIGN 53

by the interface’s implementation is in the names to which the elements within the system
are bound. Client modules import contexts defined using full path names, whereas the
implementation of an interface may use the unqualified names of elements defined in the
implementation. In the current implementation, which does not support transitive imports,
there is a more significant distinction in that the internal type revelation system provides
access to all revelations imported in the interface, while the export revelation system only
contains information revealed in the current interface. While this may at first seem some-
what arbitrary, there is in fact a logic behind this. For an interface C, the implementation
of C will need access to at least those things imported by C, since it must implement ev-
erything in the interface. A client on the other hand, may be interested in only a subset of
the functionality provided by C', and hence may only need access to a subset of the modules
imported by C. So for instance, if D imports from C, but only uses m from C where the
type of m does not mention B, then D will not have any use for the things which C gets
from B, presumably used in other elements of C' in which D is not interested.

The pairs of revelation systems generated by interfaces are associated with the name of
the interface generating them in an interface system. An interface system contains triples
representing all of the type revelation systems that have been generated so far.

Definition 5.3.5 (Interface System) An interface system Z is a finite set of associations
between interface names and type revelation systems of the form (A, M, M®), where A is
unique in I. If the relation (A, M®, M) € I, then we write T(A) = (M® M), and say
A reveals (M®, M) given .

7 holds all of the information available to a module for import. Note that the only informa-
tion that crosses module boundaries passes through Z, and that only interface modules may
change the contents of Z. This is an important property to maintain for the sake of separate
compilation, since as long as this is true no module can take advantage of information about
the details of an interface and must rely solely on the information provided by the interface.

The last definition that we need before examining the type checking rules is necessary
to support the distinction between externally visible path names and the simple names
available only within interfaces and their implementations.

Definition 5.3.6 (Ra(7,S)) For a type 7, an interface name A, and a set of lype names
(defined in A) S, define Ra(,) to be a function such that

T S=c¢
Ra(r,8) = { T'[A::t/t] if t €S and 7' =Ra(T,S — {t})

So for at any given time during the type checking of an interface A, § contains the set of
simple names revealed by the module up to the current revelations, and hence Ra(7,S) con-
verts all unqualified occurrences of names ¢ defined in A (listed in §) in 7 into names of the



CHAPTER 5. LANGUAGE DESIGN 54

M3, = {
B::T=1INT;
B:: S <# ObjectType m: proc(A::T); end,;
B:: f:func(): B:: T}
}
and
Mi; = {
T = INT;
S <# ObjectType m: proc(A::T); end;
f:func(): 7}
AT = ...

Figure 5.5: M§, Z-B after type checking interface B

form A::t. Intuitively, Ra(,) is converting types written using the module’s private notation
into types that use only the path names that are available to client modules. Without this
conversion, general typing judgments about exported types would be impossible, since no
information would be available about the names occurring within the types.

5.3.2 Modular type assignment rules and axioms

In this section, we present an overview of the type checking rules for LOOM modules. The
reader should refer to the full listing of the rules in appendix B.3 for a complete listing
of the rules, and for reference during the discussion of some of the more interesting cases
that follows. Note that for the sake of simplicity, the rules presented here assume that a
module imports only one other module. In general this does not significantly affect the
rules, since adding multiple imports (as is supported by the interpreter) is simply a matter
of performing an extra step to acquire the union of the sets of imported elements. We begin
with an examination of the most important rules for type checking interfaces.

Recall from the previous section that the rule for type checking an interface module is
given as follows:

So, Mo, M = DecLst ~> (MG, MYy)
TU{(A, MY, MY}, EF ModLst:1'
Z,E & Interface A Import B DecLst; ModLst:T'

ModLst: Int

where Z(B) = (M%, M)



CHAPTER 5. LANGUAGE DESIGN 55

For those unfamiliar with reading inference rules of this sort, the idea is to view them as
a sort of upside-down proof tree. The section below the line represents the conclusion -
in words here that under the assumptions of 7 and E, an interface as specified followed
by a possibly empty list of modules results in the interface system Z’. Above the line are
the conditions necessary to prove the conclusion. Recall that M, is an initial (empty)
revelation system, and S, is an initial (empty) set of type names. % is the exported
type revelation system associated with B. So in the top line, we get the interface systems
revealed by the declaration list - i.e. we use the rules associated with (DecLst) to create
two new revelation systems, M% and ./\/lf4 Recall that M represents the revelation
system available to clients of A, while Mil represents the revelation system available to
the implementor of A. These two revelation systems then get associated with A in 7 to
type check the remainder of the modules. So for example, after type checking the interface
presented in figure 5.2, any subsequent modules would be type checked with the addition of
the association (B, M%, M) to Z where M5 and MY are as defined in figure 5.5. Note
in particular the addition of the qualification to the names exported in M§%.

The top line of the previous example relied on the rules for lists of declarations in order
to generate the revelation systems to be placed into Z. An example of such a rule is the
following, which applies to partial revelations of the form ¢ <# 7.

SU{t}, My, Mig' + DecLst 2 (M%", M%")
S, M%G, My -t <#7; DecLst ~> (./\/l%",./\/liB”)

(DecL: <#)

where M%' = M%&(B::t <FRg(r,8)) and My = iB&(t <HT)

This rule simply continues checking the rest of the declarations with the addition of the
name of the defined type to the list of names being replaced, and the injection of the
matching constraint into the revelation systems. Note that before being injected into Mf%,
the constraint is converted so that all simple names are replaced by path names. Continuing
the example from above, the constraint S <# ObjectType m: proc(A::T); end; would be
added to M$%, and the constraint B::S <# ObjectType m: proc(A::T); end; would be
added to M%. Finally, note that in the degenerate case when the declaration list is empty
(i.e. all the declarations have been processed), the following rule applies -

(DecL: () S, Mg, My F emptyDecLst 2 (MG, M)

The revelation systems that get returned therefore contain all of the revelation information
presented in the interface.

The next example we will consider is that of type checking an implementation module.
To put this in context, we will consider a few rules as they apply to an example implemen-
tation module (figure 5.6) corresponding to the interface given in figure 5.2. Note that S
has been fully defined and an implementation has been provided for f. Also note that there



CHAPTER 5. LANGUAGE DESIGN 56

Module Implements B Imports C;

S = ObjectType m: proc(A::T); ... end
f = function(): 7 begin .. .end

end

Figure 5.6: Example LOOM module

is no need to re-import A since the elements of A are imported through the interface. This
module is type checked by the following rule:

T(4) = (M5, (Ca, B, STa))
I(B) = ((CB,EB,STg), M)
STg,CgF DefList <x (CA, Ey4, STA)
C,Ep,STpUST A+ DefLst, T,EtF rest:7'
Z,E - Module Implements A Import B DefLst; rest: T’

(ModLst: I'mp)

This is a fairly complicated rule, but in general the idea behind it is fairly straightforward.
The first two lines extract the publicly exported revelations of C' and the private revelations
of B from Z. (Recall that by definition, a type revelation system is simply a triple of a
type context, a type assignment, and an equivalence table). The list of definitions in
the implementation are then checked against the privately exported revelation system of
interface B to ensure that their declared types are consistent with their types declared
in B, using the < relation discussed further below. Finally, the definition list is type
checked using the normal type checking algorithm under the assumptions given in the
public revelation system of C' combined with any manifest types defined in interface B.

The actual type checking of the definition list is not especially interesting as it follows
the standard algorithm for type checking constants in PolyTOIL or LOOM as given
in appendix B. However, the process of determining whether or not a definition list is
consistent with an interface is worth examining in more detail, as this a relatively new
concept to LOOM.

The < relation is very similar in many ways to the idea of matching. Indeed, languages
such as SML allow a kind of matching on the functor level by allowing signature matching
to occur with parameters - that is, structure parameters to a functor need only match, or in
our terminology, be consistent with the signature specifying the parameter. The essential
idea is that as with matching, the relation holds when the lower bound of the constraint
holds a superset of the elements of the upper bound. In this case, this means that the
module must provide implementations for at least those constants and types declared but
not defined in the revelation system of the interface it wishes to implement. Furthermore,
the types of the implementations must be either equal to their declared types, or in the case



CHAPTER 5. LANGUAGE DESIGN 57

of partially revealed types, must match the upper bound placed on them in the interface.
An example of the rules for definition lists is the following, which deals with the definition
of a type declared partially abstract in an interface.

(t<#t1')ely, C,STET<H#T

C,STU{t = 7} Frest <« (Ca—{t<#7'},E4,STa)
C,STHt=r1;rest <« (Ca,E4,ST4)

(<x: <#)

Using the example from figures 5.2 and 5.6, this rule could be applied to check if the
definition S = ObjectType m: proc(A::T); ... end is consistent with the partial revelation
declared in the interface B - S <# ObjectType m: proc(A::T); end. Type checking of the
interface module injects the partial revelation above into Cg, where it can be found during
the checking of <. A matching query is made with the new defined type of S and the upper
bound on the partial relation, ObjectType m: proc(A::T); end. If the query succeeds, then
the rest of the definitions may be checked against the revelation system with the partial
revelation of S removed. Note that it is important to remove revelations from the revelation
system as we discover that they are consistent, since we also require for consistency that
every revelation in the interface (except manifest types, which are themselves definitions)
be implemented in the implementation module. This is checked by the rule for an empty
definition list, signifying that all of the definitions have been processed.

(<:0) C,STFemptyDefLst <« ({},{},STa)

Note that in fact this rule is something of a simplification, since the internal revelation
system of an interface may also include imported values which do not get implemented
in the implementation module. It is quite straightforward to check that all remaining
revelations in a revelation system were imported into the interface, since revelations from
the interface itself will always be simple names whereas revelations from imported modules
must be qualified path names.

5.4 Modular Semantics

In this section, we provide an overview of the semantic rules for the LOOM modules,
beginning with some definitions and continuing with a discussion of a few of the more
interesting rules in detail. The reader should refer to appendix C.2 for a complete listing of
the rules.

The semantic rules for the modules are significantly simpler than the type checking rules,
reflecting the fact that a significant amount of the complexity of the module system lies in
the powerful type abstraction mechanisms built into it. This simplicity is somewhat artificial
however, due to the fact that we deal only with an interpreted language, and assume that
all modules have been implemented before they are imported. These restrictions are highly



CHAPTER 5. LANGUAGE DESIGN 58

artificial, and result in a much simpler semantics. The tedious complexities of separate
compilation are largely avoided in the interpreter.

In the LOOM interpreter, we largely ignore module interfaces, using them solely as a
means of specifying what values escape the closed environments of implementation modules.
A system of modules is evaluated in the context of a set of associations that defines the
environments or interface name lists available for use by other modules. In the natural
semantics in the appendices, we define an environment as such:

Definition 5.4.1 (Environment) An environment p contains bindings of identifiers to
values, such as closures, locations, classes etc. The notation p[v/z] denotes the binding of
value v to identifier f. If identifier f is bound in p to value v, we write p(z) = v.

Environments provide the bindings of identifiers to values for lookup when they are
encountered. Environments get carefully scoped and controlled so that correct local def-
initions of identifiers are maintained. This is particularly important with functions and
classes, which need to maintain their own environments representing the local scope of
their definition, since in general with first class functions and classes, there is no guarantee
that bindings in the evaluation environment will be consistent with the bindings in the
definition environment.

Definition 5.4.2 (Environment System) An environment system X is a finite set of
associations between triples of names, sets of exported names, and environments of the form

(A, N, p), where A is unique in 3. If the relation (A, N, p) € 3, then we say X(A) = (N, p).

Intuitively, 3 keeps track of all the interfaces that have been seen, along with both
a set of identifiers indicating the values to be exported from the implementation and an
environment that gets defined by the implementation to hold the exported values. Since we
assume that modules will be implemented before they are imported, we do not have to deal
with the rather complicated issues that arise in trying to build environments containing
information that is not yet available.

Since we are primarily concerned with the behavior of the language at run time in
the semantics, it is unsurprising that the most interesting rules deal with implementation
modules which hold run time information, as opposed to interfaces which hold type checking
information. The semantic behavior of interface modules consists of adding an entry to X
containing the list of exported names and an initial environment containing pervasive values
such as ground type operations and values imported through the interface. Note that while
we do restrict export of constants from a module to those declared in interfaces, this is
in principle not required since the type checking process guarantees that no illicit use of
unexported information can be made.

The first rule we will look at describes the behavior of implementation modules. While in
general we do not provide any facilities for including code in a module to be executed upon



CHAPTER 5. LANGUAGE DESIGN 59

creation, classes may evaluate initial values for instance variables when they themselves are
evaluated, resulting in state changes. Therefore, we must maintain state throughout the
evaluation of the module list.

Y(A) = (Na,p4), X(B) = (NB,pB)
(defLStv paU PBMVa (Dv S) \l/d (10/7 S/)
(ModLst, (X — {(A,Na,pa)}) U{(A,Na,p")}, po,s’) L& (2, 5"
odule Implements mport eflist; ModLst, 2., pg, s , S
Module Impl Al B defList;ModLst, Y. IS

ModLst: Imp

In the rule above, the values for N4, p4 and pp are initially extracted from the interface
being implemented and the interface being imported. A4 contains the names of the values to
be exported from A, p4 contains the initial environment in which to evaluate the definitions,
and pp contains the environment exported by interface B. Note that this relies on the fact
that B itself must have already been implemented, since otherwise pg will not contain Bs
exports. The definition list itself is evaluated in the initial environment p4 U pp, containing
imports to the interface and to the module itself, as well as the pervasive values mentioned
above. The definition list is also initially evaluated with the name list A4 extracted from
the interface A, and an extra empty environment to which will be added bindings for all
names in N4. Finally, the rest of the module list is evaluated with an environment system in
which the original association (A, N4, pa) is replaced with the association (A, Ny, p’), where
p' is the environment created by binding each identifier appearing in N4 to its appropriate
value from the list of definitions.

This last behavior is described by the rules for evaluating definition list. The rule below
describes the behavior of an exported constant definition in a definition list.

feN
(e, piss) L (v, )
(DefLst,pi[v/fl, N, pelv/A:: f],5") 1 (oL, s")
((f = ezt DefLst), pi, N, pe,s) 1 (pl, s")

The statement f € AN establishes that f is in fact exported. A simpler rule handles
cases where f ¢ N - that is, where f is not exported. The expression e is evaluated in
the internal environment which contains all of the imported and recently defined values,
and the resulting value v is then bound in both the internal and external environments. In
the internal environment, it is bound to the simple name f - in the exported environment
being built, it is bound to the name A:: f. For the exported environment, the result is that

DefLst

A:: f is bound in an external environment, but was evaluated in an internal environment.
Consequently, any closure information held in v will refer to the internal environment,
allowing full access to the module. At the same time, nothing that does not appear in the
interface gets exported to the new environment.



Chapter 6

The Interpreter

6.1 Implementation issues

A prototype type checker and interpreter for the language LOOM has been implemented
in SML, using the sml-yacc/sml-lex tools. The code for the base language is modified from
the code for the PolyTOIL [BSv(G95] interpreter originally implemented by Robert van
Gent [vG93] and Angela Schuett [Sch94], and subsequently worked on by Jasper Rosenberg
and myself. Interestingly, almost all of the modifications for handling the hash types occur
only in the type checking phase, with the interpreter remaining relatively unchanged. The
module code on the other hand is split fairly evenly between the interpreter and the type
checker and represents a more significant departure from the original interpreter.

The current implementation of the module interpreter is not overly complicated, rel-
atively speaking. Note though that this implementation does not yet support transitive
import or multiple interfaces, two language features that greatly complicate the handling
of the type checking and the interpretation, especially if a means is provided to rename
imported features. More significantly however, the current interpreter does not do any sort
of separate compilation.

In the context of an interpreter, it is not completely clear what separate “compilation”
means, but at the least, we would like to be able allow modules to be interpreted before
the modules that they inherit. While the language design itself does not prohibit this,
we have for the sake of simplicity allowed the prototype interpreter to assume that no
interface will be imported before it is implemented by an implementation module. In
general, interpreting modules without having already interpreted their imports is quite
complicated. Each module must keep track of imported identifiers for which it does not yet
have bindings so that when the unresolved references are finally defined, the interpreter may
go back and patch in bindings wherever they are needed. Since these identifiers may need
to be rebound within a module in many different places (within every closure generated in

60



CHAPTER 6. THE INTERPRETER 61

the module, for example), this gets very complicated.

Overall, we are very satisfied with the interpreter as a tool for testing and evaluating the
language. We have ported many of the programs written in PolyTOIL to LOOM, and
have begun the process of implementing the interpreter itself in LOOM. It is important
to begin testing LOOM on larger and larger programs, particularly with the modular
extensions since they are specifically aimed at programming in the large. Currently however,
running large programs through the interpreter is tedious because of the inherent inefliciency
of the interpretation. For the time being, we have been making some efforts to replace the
more inefficient sections of the interpreter with better implementations, but it is to be hoped
that some time in the not too distant future we will be able to write a compiler for LOOM.
This would allow us to test much more fully the facilities that LOOM provides for separate
compilation and programming in the large in general.

6.2 Using the interpreter

Readers interested in obtaining the LOOM interpreter should contact Professor Kim Bruce
at Williams College. It can generally be made available through ftp services or the world
wide web. The interpreter for LOOM is distributed in a directory called “interpreter”.
Before the main interpreter can be run, the files grammar.sml and scanner.sml be built.
If these files are not present in the distribution directory, type sml-yacc grammar followed
by sml-lex scanner. This should build the parser and scanner, assuming that there both
the sml-yacc and sml-lex compiler generator tools are available on the destination system.
The rest of the interpreter can be built in the SML compiler. Note that this system was
implemented in Standard ML of New Jersey, version 0.93. We have not had access to the
newest version of the compiler, but we have had a report that the interpreter did not compile
successfully under a beta version of SML 1.09.

The SML compiler is interactive. To run the interpreter interactively, start SML and
enter use “loader.sml”;. This will start the compilation process. Compilation takes from
5 to 20 minutes, depending primarily on the memory available to the compiler. When the
compilation is completed, a prompt will appear. To interpret a LOOM program named
program.loom, enter neval “program.loom”; at the prompt. To interpret the same program
with the input file input.loom, enter eval “program.loom” “input.loom”; at the prompt. An
executable version of the interpreter can be built by using the file make_ezec.sml instead
of loader.sml. The executable version handles all normal unix input/output redirection. It
must be called with a LOOM program as the first argument, but the input can come from
the standard input or a file. If a second parameter is given, it is assumed to be an input

file.



Chapter 7

Evaluation of the Language

7.1 Programming in LOOM

One of the most important parts of evaluating the design of a language is writing programs
in it. While LOOM has not been in existence long enough to have accumulated a large
body of code, we have been very pleased with the results that we have seen so far. In general,
the LOOM module structure seems to provide some very nice functionality that was not
available in the original LOOM implementation. As an example we will reconsider the
example of an efflicient implementation of sets from figure 4.1, this time using the modular

facilities added to LOOM.

7.1.1 Levels of Access

Recall from section 4.1.2 that in attempting to provide an efficient destructive intersect
method in a set class, we ran up against what seems to be a fundamental conflict between
the need to be able to use knowledge of the implementation of the set to make intersection
efficient, and the need to hide all knowledge of the implementation from clients for reasons
of abstraction and separate compilation. So for example, we may implement sets using
ordered lists or bit fields and in general would like both implementations to provide the
same interface so that they could be interchanged freely. As can be seen in figure 4.1 this
cannot be done well in PolyTOIL or the original LOOM. The binary method intersect
must be able to access its parameter other as an ordered list in order to do an efficient
traversal implementing the intersection. Since in ordinary LOOM there is only one level of
abstraction available, this means that in general any client of the set class may also access
the set as a list, which violates abstraction and prohibits separate compilations.

Now consider the new implementation of the set class in figures 7.1 and 7.2, designed
using the modular facilities of LOOM. With modules, we get an extra level of abstraction
to work with - that is, abstraction on the object level and abstraction on the module level.

62



CHAPTER 7. EVALUATION OF THE LANGUAGE 63

Interface IntOrdList;

OrdListType = ObjectType
first: proc();
next: proc();

off: func():Boolean; -- is current elt off end of list?
add: proc(Integer);
deleteCur: proc(); -- current is next elt after deleteCur

contains: func(Integer) :Boolean;
getCur: func():Integer
end;
OrdListClassType = ClassType ... end;
OrdListClass: OrdListClassType;
end;
Interface SetOfInt;
IntSetType <# ObjectType
add: proc(Integer);
remove: proc(Integer);
contains: func(Integer) :Boolean;
intersect: proc(MyType)
end;

function newSet(): IntSetType;

end; —- Interface Set0fInt

Figure 7.1: Interface for sets with efficient intersection. Note that nothing in interface
Set0fInt specifies any relation to or dependence on IntOrdList



CHAPTER 7. EVALUATION OF THE LANGUAGE 64

Module Implements SetOfInt import IntOrdList;
type

IntSetType = ObjectType include IntOrdList::0rdListType
remove :proc(Integer);
intersect: proc(MyType)

end;

ListSetClassType = ClassType include IntOrdList::0rdListClassType;
methods visible
remove :proc(Integer);
intersect: proc(MyType)
end;

const

ListSetClass = class inherit IntOrdList::0rdListClass
methods visible

As in figure 4.1

end; -- class

function newSet() :IntSetType;
begin
return new(ListSetClass)
end;

end —-- Module

Figure 7.2: Module implementing sets with efficient intersection. Note how ListSetClass
(defined in full in figure 4.1) takes advantage of the knowledge of the list implementation
to do an intersect in a single pass across the two sets.



CHAPTER 7. EVALUATION OF THE LANGUAGE 65

By providing different amounts of access to implementation details on the different levels, we
can design a system that supports the functionality we need while maintaining the needed
abstraction barrier between the module and its clients.

In figure 7.1, interface Set0fInt partially reveals the type of IntSet objects, and provides
a function for creating a new set. Note that this last is necessary because we do not export
the class from the implementation - in addition to being unnecessary from the client’s
perspective, the class reveals too much of the implementation. A client can therefore create
and store objects of type IntSetType. More importantly, it has sufficient information to
be able to send the messages add, remove, contains and intersect, but does not have
any information about the other methods supported by IntSetType. As a result, the
implementation of IntSetType may be changed to any type which supports the revealed
methods of IntSetType without requiring any changes or recompilation to clients of the
module. For example, the module in 7.2 implementing Set0fInt as an ordered list could
be replaced with a new module using bit fields. Even more generally, a program could
be distributed with both modules available, allowing the end user to choose which set
implementation should be used based on local constraints.

In the implementation module, given in figure 7.2, a complete instantiation of IntSetType
is provided - in this case using ordered lists. Within the scope of the module, the program-
mer is free to use this implementation specific information in the intersect method to get at
the internal structure of the other parameter and perform efficient intersection. In this case,
intersect takes advantage of the fact that the sets are implemented as ordered lists to do the
entire intersect in a single pass across the two lists. An intersection performed using only
the exported methods of ListSetClass would have to be done through repeated contains
queries, changing the complexity from additive in the size of the sets to multiplicative in
the size of the sets.

One might initially think about getting similar functionality without modules by defining
a function newSet2 as in figure 7.3. This fails for two reasons. First, the binary message
intersect can never be sent to elements of type #IntSetType2, since in general methods
whose types contain contravariant occurrences of My Type can never be sent to hash types.
(Note that in figure 7.1, even though a client does not have definitive information about the
true type of objects of type IntSetType, it can still use binary methods such as intersect
since IntSetType is completely known in the context where the method gets evaluated.)
Secondly, intersect still must have access to all of the methods of its parameter, and
hence cannot take a parameter of type #IntSetType2. This means that the client can
only intersect with sets that haven’t been created with newSet2, (that is, whose type is
completely known) which negates the whole purpose of the exercise. This second problem
could be handled somewhat reasonably if the language provided a mechanism for testing
and changing dynamic types by having the intersect method take a parameter of type
#IntSetType2 and then conditionally coerce it up to type IntSetType. Since all of this
takes place within the method itself, no abstraction is lost. The first problem however



CHAPTER 7. EVALUATION OF THE LANGUAGE 66

IntSetType2 = ObjectType
add: proc(Integer);
remove: proc(Integer);
contains: func(Integer) :Boolean;
intersect: proc(MyType)
end;

newSet2 = function(): #IntSetType2

var
newSet:IntSetType -—as defined before

begin
newSet := new(ListSetClass); --same ListSetClass
return newSet; -- IntSetType <# IntSetType2

end;

Figure 7.3: Abstract sets without modules

cannot in general be solved in this manner. While one could certainly coerce the type of
an object from #IntSetType2 to IntSetType and then send it the intersect message, this
forces the code to rely explicitly on IntSetType being the actual implementation type of
the object.

7.1.2 Friends

This conflict between the need for access to structural details and the need for abstraction
that we see in in the set example is very common in object-oriented programming, making
up a significant part of what is known as the binary method problem [BCCT96]. It is very
frequently the case when designing object-oriented systems that methods must be built into
objects to allow access to internal structure. (Note that if instance variables are publicly
visible this is not a problem, but since such a system also eliminates all of the abstraction
benefits of the object encapsulation, this is not a viable solution) This is very undesirable in
terms of attempting to maintain abstraction and may also make it more difficult to maintain
internal invariants since clients have potentially destructive access to internal structure.
C++ attempts to deal with this issue with a feature called friends. A C++ class
may optionally include a list of functions and other classes that are to be allowed access
to the class’s private features. This allows the example above to be written relatively
straightforwardly, since classes are defined to be friends with themselves [ES90]. Eiffel also
provides a similar functionality by allowing the programmer to specify which features should



CHAPTER 7. EVALUATION OF THE LANGUAGE 67

be exported to which classes [Mey92]. Other approaches to this problem include a concept
called multi-methods [CL94] which allows dynamic message dispatch based on the dynamic
type of the parameter to the method, and something called friendly functions [PT93] which
provides similar functionality to C++’s friends in a type safe manner.

In LOOM, we provide the essence of the friends idea without tampering with the
semantics of classes, and class abstraction. Friends of a partially abstract type are simply
functions or classes that occupy the same module as the type’s implementation, and hence
have access to the full interface of the type. By separating out the two levels of abstraction,
we allow programmers to use the “friend” idea without having to worry about the complex
changes in class behavior that can result. This is not the case in all such mechanisms. In
particular, the C4++ friend mechanism seems excessively complicated, with many obscure
behaviors and restrictions that make it difficult to easily assess the affect of adding such
functionality, particularly when combined with private/protected interfaces. Finally, note
that in C++, all friends must be listed explicitly in the class declaration. As a result, new
friends cannot be declared without modifying the original class. In LOOM, new “friends”
can be added at any point without modifying the original class. Of course, in the current
implementation all code that wishes to use the friendly interface must reside in the same
module as the class itself unless the friendly interface is exported, and hence adding a new
friend requires modifying the module - not a significant improvement over C++.

7.1.3 Problems with the language

This last point brings up a definite shortcoming of the current language. Note that in fig-
ure 7.2, Set0OfInt needs to import the class IntOrdList in order to inherit from it. This
means that the complete type of OrdListClassType must be exported in the interface
IntOrdList. Recall that one of the big advantages of modules is that they allow us to ab-
stract away class implementations, eliminating inessential details and facilitating separate
compilation as well as maintaining abstraction barriers. While we succeeded in doing this
for the module Set0fInt, our design prevented us from doing so with IntOrdList since we
were required to export OrdListClass (making the interface reflect the implementation).
Moreover, by partially abstracting IntSetType and not exporting its class implementa-
tion, we have eliminated the possibility of ever inheriting from ListSetClass or of adding
“friendly” functionality outside of the module in which it resides. Finally, note that in a
real class library, we could very well want to implement OrdListClass as a subclass of a
more general list class. If this was the case, we would want the interface IntOrdList to only
partially reveal OrdListType, since the full type of OrdListobjects would include methods
for arbitrary changes to the list inherited from the parent list implementation that could
not safely be exported to clients.

What really seems to be happening here is a regression of what might be called the
peer/client problem from objects to modules. The original problem that we were attempt-



CHAPTER 7. EVALUATION OF THE LANGUAGE 68

ing to address in example 7.1 is the need to provide certain classes (the peers) privileged
implementation information and access, without violating the abstraction between the class
and its clients. This was the original problem in figure 4.1 that we wished to address with
the modules! While we have succeeded in eliminating this problem at one level, it seems
to have reappeared again on the next level. While we are clearly better off than before,
programmers still have to deal with the peer/client problem, and as result, must still com-
promise abstraction in order to provide needed functionality. In the next section, we discuss
one possible solution to this problem.

7.2 Future Work

There are a number of interesting issues that remain to be examined in LOOM - both
issues that we did not have time to address, and issues that in fact arose during the design
or evaluation of the language. This year’s work provides a solid, basic module system
that implements what we felt was the essential functionality for programming in the large.
However, it is very interesting to think about some of the more subtle and interesting
additions to a module system that are possible.

7.2.1 Multiple interfaces/modules

In designing LOOM, we struggled for a long time over the issue of how interfaces relate to
implementations. There are essentially two issues that come up in trying to relate modules
and interfaces - whether or not implementations are explicitly linked to interfaces, and if so,
whether the correspondence between interfaces and implementations is one to one. So for
instance, in a language like Eiffel which uses classes as the unit of modular abstraction, the
interfaces are the types of the classes, which in Eiffel are in fact the classes themselves. As
a result, there is no explicit control over the linking between interface and implementation.
The interface (type) is bound to one and only one implementation (class).

At the other extreme, an SML structure can be associated with any number of different
signatures, and any signature may be implemented by multiple structures. While SML
requires that a structure definition be given a signature, the signature name chosen is
not inherently part of the structure. So for example, a functor is defined as to take a
parameter which has a signature as its “type”, and in general, any structure whose internal
implementation satisfies that signature may be passed in as a parameter. Clearly then,
structures may be bound to different signatures. At the same time, note that there can
be multiple structures using the same signature as their interface. SML uses the structure
name in path names, as opposed to qualifying members with the signature (interface) name.
This is a very different approach from that of most other languages, and while it is not
something that we agree with whole-heartedly, we believe that there may be parts of this
that are useful. For instance, is might seem reasonable to allow implementation modules



CHAPTER 7. EVALUATION OF THE LANGUAGE 69

to deal with other implementation modules directly, particularly in the context of some
sort of modular inherit mechanism. Moreover the manner in which SML allows multiple
interfaces to a single structure raises interesting possibilities for implementing structures
whose functionality is different in different contexts. This kind of construct is used frequently
in object-oriented database programming, where it is common to want different objects to
have different views of each other [Ala89].

Modula-3 supports a number of interesting features in this regard. To begin with,
Modula-3 allows modules to implement multiple interfaces in a very straightforward way -
modules simply specify more than one interface name in their export list. This is a very
nice feature, and seems semantically clearer than the perhaps more powerful SML features.
This particular functionality seems fairly important to a module system. In addition to
a wide variety of programming styles that make it valuable to be able to specify separate
interfaces to a common implementation, there is the very fundamental issue of the difference
between the interfaces needed by client modules and those needed by peer modules. In
general, client modules should be granted as little information as possible about details of
the implementation. Indeed, in LOOM, modules have proved to be very nice in situations
where a good deal of complexity is necessary to support something with a relatively simple
interface. Without a mechanism for hiding irrelevant (from the client perspective) details,
the client must sort through unacceptable amounts of unwanted information to find the
small bit that is valuable to them. Modules provide a mechanism for packaging these
“irrelevant” details together and allowing clients to only deal with what is relevant to
them. However, it is frequently the case that a peer module may wish to have access to
more explicit implementation details in order to reuse the code. So for example in the
set example from figure 7.2, module SetOfInt needs access to the actual implementation of
ListOfInt in order to inherit from the ListClass. In general however, clients of ListOflnt
may not want access to ListClass. More importantly, if they are granted access, then
there is a loss of both abstraction and separate compilation. Since clients have access to
implementation details, they may violate the abstraction barrier freely, and since client
modules now depend on specific implementation details as opposed to simply a generic
list interface, small implementation changes to the list may require otherwise unnecessary
recompilation.

The solution to this, as Modula-3 handles it, is to allow clients to specify multiple
interfaces. Client modules restrict themselves to using the abstract list interfaces, while peer
modules that need access to implementation specific details use a more specific interface.
This is a very nice solution to the problem, and one very well suited to the LOOM modules.
Note that types exported through separate interfaces in LOOM could still potentially
interact even if one or both were only partially revealed by using bounded genericity and
hash types. While during the initial design process it was not clear that we necessarily
wanted to support multiple interfaces, our experience in evaluating the language seems to
suggest that this would provide a very useful functionality, and is certainly worth a close



CHAPTER 7. EVALUATION OF THE LANGUAGE 70

examination in the future.

Modula-3 also supports an interesting mechanism whereby an interface may be imple-
mented by multiple implementation modules. Multiple implementations may list the same
interface, so long as each feature of the interface is implemented in exactly one of the
modules. This allows for a very interesting variant to the miz-in idea supported by some
object-oriented languages with multiple inheritance. Essentially, this allows the programmer
to select parts of different modules and export them as a single unit. This seems like a fairly
complicated mechanism to support, and it is not immediately clear how much functionality
it adds. Nonetheless, it seems interesting enough to warrant a closer examination.

7.2.2 Parameterization over modules

Another issue that still needs some consideration is the possibility of allowing parameteriza-
tion of modules over modules. LOOM already has very strong facilities for writing generic
code, and it is not clear how much additional benefit could be received from parameter-
ized modules, but it is certainly something to look into. We have already seen numerous
references to SML’s approach to module parameterization, which results in behavior in
some ways nicely coincident with more familiar facilities such as function calls and bind-
ing. In general however, it does not seem like an especially good idea to begin to treat
implementations as values that can be accessed directly. While this allows some of SML’s
more interesting behaviors, it also seems intrinsically linked with its inability to support
separate compilation, and moreover makes it very difficult to avoid programming module
dependencies into unrelated code simply because the implementation name must be used
instead of that of a generic interface.

Modula-3 provides generics through parameterization over interfaces. Generic modules
and interfaces can be written containing so-called formal import lists which specify one
or more unused interface names imported by the module, but unbound to any specific
interface. Generics are instantiated by binding actual interfaces to the formal interfaces.
The semantics of this behavior is essentially equivalent to adding a list of imports renaming
the actuals as the formals [Har92].

Parameterization over modules is a subject that needs to be evaluated very carefully. It
seems in some senses to be a very powerful tool, but it is not clear that it is necessarily a
useful or needed tool. The LOOM generic facilities provide much of the functionality that
might otherwise require parameterized modules. However, the possibility of supporting at
least a limited form of modular parameterization should certainly be kept open.

One interesting thing to note is that both of these concepts - multiple interfaces and
modular parameterization - could potentially require that implementation modules be per-
mitted to be bound to names. This was in fact the case in the original design for LOOM,
but was dropped for reasons of simplicity. Interestingly enough, this binding of names to
modules seems to begin to reapproach the SML system at some level. Once implementa-



CHAPTER 7. EVALUATION OF THE LANGUAGE 71

tions are given names, it seems reasonable to begin to be able to treat them as values, and
questions about the distinction between interfaces and modules begin to reappear. Up until
this point the LOOM module design has ended up paralleling choices made in Modula-3,
despite perhaps more time spent studying the SMLlanguage. At this point, it seems like
it may be worthwhile to examine the nature of the SML modules once again.

7.2.3 Storage allocation on modules?

The last issue that is worth looking more closely at is the possibility of supporting a more
general notion of modules, including perhaps variables and executable code. In general, we
have not found particularly convincing arguments for allowing blocks of executable code
to be incorporated into modules to be executed at run-time. Modula-3 supports this as a
means of initializing modules, but it is not clear how useful this is, and it is almost certainly
useless without some way of allocating storage within a module.

There are on the other hand some quite reasonable, albeit not overwhelming arguments
for allowing variables inside of modules. Essentially, this provides a functionality somewhere
between that of an instance variable in an object and a static variable in a language like
C or C++. This allows modules to keep state information relevant only to them within
their own scope. While it is probably worth examining this possibility more closely at some
point, there does not seem to be any significant shortcomings of the languages that would

be addressed by this.



Chapter 8

Conclusion

8.1 Are modules and classes redundant?

There is still a question in many peoples minds about whether or not it is truly useful
to supply both modules and classes as language features. As we mentioned briefly at the
beginning of the chapter, languages such as SmallTalk and Eiffel use classes as the sole unit
of modular organization and compilation. In some ways this is a nice solution as it provides
a very simple interface for the user, and does not clutter the language with unnecessary
features. Indeed, there does at times seem to be a certain amount of overlap in functionality
between the two that makes it seem redundant to provide both, particularly in languages
with very general models of one or both features. On closer examination however, we feel
that there is a strong need for providing both, for a number of reasons.

The first issue that points to a need for both modules and classes is that there are
functionalities to each that the other is unsuited to. We have seen this in a number of
places. One of the most telling of these is the problems that object-oriented systems have
with supporting separate compilation. As we noted before, languages that rely on class
interfaces to provide the buffer between implementation details and clients suffer drastically
in terms of separate compilation. Even in languages which do not allow or require instance
variables to appear in the interface of the object/class (of which there are very few) it
is almost impossible to keep implementation information from appearing in the types of
methods. The real issue behind this is that classes are really too small. It is very common
in writing programs that several entities will need to interact on a peer to peer basis.
However in almost all cases it is virtually impossible and certainly undesirable to program
an entire set of such entities into an object. Classes are designed to hold a single entity,
focused around its data - they do not provide a good model for holding interacting entities.
As a result of this, the interaction must take place outside of the object, and hence the
object must provide explicit functionality to in essence open its scope to share structural

72



CHAPTER 8. CONCLUSION 73

information. This requires that the types of structural information appear in the interface of
the object. As a result of this, any non-trivial alteration to the implementation of the object
will force all its clients to recompile, since they all are presented with an open interface.

This points up an immediate advantage of having both classes and modules - the fact
that it allows to maintain three completely distinct levels of abstraction/scoping. Things
may be private to an object, private to a module, or available to anyone who wants it. This
allows much more subtle use of scoping and abstraction than any two levels of scoping.
Also, note that with modules we say “available to anyone who wants it”, not “everyone”.
This is also an important functionality that classes do not provide. In general, there is
no way to use the class facility to specify client dependencies among classes (as opposed
to inheritance dependencies). All classes are visible to all others in a pure object system.
C++ gets around this by providing scoping within files, but this is essentially a primitive
modular facility. The problem with this is that a compiler must be extremely smart if it
is to avoid having to avoid recompile all classes whenever one changes its interface. With
modules on the other hand, there is an explicit dependency list appended to the beginning
of each module (the import list) which tells the compiler ezactly which modules depend on
which. This allows it to be much more selective in its recompilations.

Note that at the core there is a fundamental difference between classes and modules in
that classes are run time entities, while modules are essentially compile time entities. This
has two very noticeable effects. The first of these is actually an efficiency issue. Even the
most efficient implementations of object-oriented systems must make sacrifices in terms of
speed. The problem is that objects are run-time entities - indeed, a large part of the value
of objects is their dynamic nature. Modules on the other hand are completely limited to
compile time. While the compiler may have to do more work to patch together the system
from many disparate pieces compiled at different times, once it does so it may hardwire in
the exact location of everything from every module. Because modules do not need to be
handled dynamically, there is never a need to do lookups in tables or indirections through
other modules. This is certainly not an argument for eliminating objects - the overhead of
lookup is more than worth the flexibility gained. It is however, a strong argument against
trying to cram things that do not truly belong in classes into them simply to avoid having to
use a separate language structure. This is ironically particularly prevalent in C++, where
it is common to see code written using classes without any use of inheritance or subclassing
at all, exactly as one might use a module.

The second issue to be considered with respect to the run-time/compile-time distinction
is that of the difference between import and inheritance. Inheritance has three central func-
tions. Firstly, it is a means of code reuse and organization. Inheritance allows code defined
once in an object to be reused in a subclass without being rewritten. Secondly, inheritance
is a means of changing the functionality of an operation associated with an object. By
redefining a method, subclasses can specialize behavior for their own needs. Finally, inher-
itance is generally used as a means for either defining or reflecting the subtyping hierarchy.



CHAPTER 8. CONCLUSION 74

All of these different uses require very complicated and sometimes restrictive rules. As a
consequence of this, things like removing an inherited operation from a class’s interface is
generally not a good idea, even though it is frequently allowed. Eiffel claims that if this
is done, it should not generate subtypes, but it doubtful that this is enforced, and C++
behaves similarly. In general, it is most common that all inherited features appear in the
interface.

Import on the other hand primarily a method of specifying dependencies and gaining
access in a scoped system. There is no idea of redefinition of imported elements, and perhaps
most importantly, there is no need to worry about maintaining a safe subtype relation. It
is frequently the case that modules will wish to import other modules for their private use
without them appearing in the interface. Even in a transitive system this should be possible
by importing to the implementation instead of the interface. It may also be the case that a
module will export only parts of another module if this functionality is provided. All of this
is quite acceptable with modules, but potentially very problematic with objects. It does
not seem likely that a system that supports the kind of facilities desired for modular import
will be able to enforce safe inheritance, while the rules for safe inheritance are liable to be
too restrictive for import.

Finally, recall that classes really do not provide the kind of abstraction we need for
true modular programming. Classes must almost always export too much information, and
hence if we are using the class as our fundamental unit of abstraction, then we must rely
on clients not to take advantage of privileged methods, either maliciously or accidentally.
Moreover, class systems do not generally provide any support for partial abstraction, or
indeed any type abstraction other than the ability in some systems to abstract away private
class features. In general the abstraction facilities of a powerful module system are almost
impossible to duplicate with classes, and it is not clear that there is any nice way to extend
classes to provide similar functionality.

These issues lead us to feel that it is worth having both modules and objects in the
same language, and that indeed it is beneficial to do so. Without modules, languages with
classes are forced to try and add functionality to classes to simulate modular features,
and vice versa. Rather than complicating things by having both modules and classes, it
is possible to actually simplify things, since each component’s required functionality gets
smaller and more well-defined. We feel that a strong module system with good support for
type abstraction, separate compilation and namespace management is an essential feature
of any language.



Bibliography

[ACY5]

[Alag9]

[BCCT96]

[BCD*93]

[BCK94]

[Bru93]

[Bru94]

[BSvGY5]

Martin Abadi and Luca Cardelli. On subtyping and matching. In Proceedings
ECOOP 95, pages 145-167, 1995.

Suad Alagi¢. Object-Oriented Database Programming. Texts and Monographs
in Computer Science. Springer-Verlag New York Inc., 1989.

Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Objects Group,
Gary T. Leavens, and Benjamin Pierce. On binary methods. Theory and Prac-
tice of Object-Oriented Systems, 1996. to appear.

K. Bruce, J. Crabtree, A. Dimock, R. Muller, T. Murtagh, and R. van Gent.
Safe and decidable type checking in an object-oriented language. In Proc. ACM
Symp. on Objecl-Oriented Programming: Systems, Languages, and Applica-
tions, pages 29-46, 1993.

K. Bruce, J. Crabtree, and G. Kanapathy. An operational semantics for
TOOPLE: A statically-typed object-oriented programming language. In
S. Brookes, M. Main, A. Melton, M. Mislove, and D. Schmidt, editors, Math-
ematical Foundations of Programming Semantics, pages 603-626. LNCS 802,
Springer-Verlag, 1994.

K. Bruce. Safe type checking in a statically typed object-oriented programming
language. In Proc. ACM Symp. on Principles of Programming Languages, pages
285-298, 1993.

K. Bruce. A paradigmatic object-oriented programming language: design, static
typing and semantics. Journal of Functional Programming, 4(2):127-206, 1994.
An earlier version of this paper appeared in the 1993 POPL Proceedings.

Kim B. Bruce, Angela Schuett, and Robert van Gent. PolyTOIL: A type-safe
polymorphic object-oriented language, extended abstract. In EFCOOP ’95, pages
27-51. LNCS 952, Springer-Verlag, 1995. A complete version of this paper with
full proofs is available via http://www.cs.williams.edu/~kim/.

75



BIBLIOGRAPHY 76

[BvG93]

[Car89]

[CLY4]

[CWS5]

[DGLM95]

[ES90]

[Har92]

[HMMS6]

[Joi95]

[Jon96]

[KLMO94]

[KMS9]

[Ler94]

Kim B. Bruce and Robert van Gent. TOIL: A new type-safe object-oriented
imperative language. Technical report, Williams College, 1993.

L. Cardelli. Typeful programming. Technical Report 45, DEC Systems Research
Center, 1989. Presented at IFIP Advanced Seminar on Formal Descriptions of
Programming Concepts.

Craig Chambers and Gary T. Leavens. Typechecking and modules for multi-
methods. In OOPSLA Proceedings, 1994. to appear.

L. Cardelli and P. Wegner. On understanding types, data abstraction, and
polymorphism. Computing Surveys, 17(4):471-522, 1985.

Mark Day, Robert Gruber, Barbara Liskov, and Andrew C. Meyers. Subtypes
vs. where clauses: Constraining parametric polymorphism. In Proc. ACM Symp.
on Object-Oriented Programming: Systems, Languages, and Applications, pages
156-168, 1995.

Margaret A. Ellis and Bjarne Stroustrop. The annotated Ct+ reference manual.
Addison-Wesley, 1990.

Samuel P. Harbison. Modula-3. Prentice-Hall, Inc., New Jersey, 1992.

R. Harper, D.B. MacQueen, and R. Milner. Standard ML. Technical Report
ECS-LFCS-86-2, Lab. for Foundations of Computer Science, University of Ed-
inburgh, March 1986.

Joint Technical Committee ISO/IEC JTC 1. Ada 95 Reference Manual. Inter-
metrics, Inc., 1995.

Mark P. Jones. Using parameterized signatures to express modular structure.
In 23rd ACM Symp. Principles of Programming Languages, pages 68-78, 1996.

Dinesh Katiyar, David Luckham, and John Mitchell. A type system for proto-
typing languages. In 21st ACM Symp. Principles of Programming Languages,
pages 138-150, 1994.

P.C. Kanellakis and J.C. Mitchell. Polymorphic unification and ML typing. In
16th ACM Symposium on Principles of Programming Languages, pages 105-115,
1989.

Xavier Leroy. Manifest types, modules, and separate compilation. In Proc. 21st
ACM Symp. on Principles of Programming Languages, pages 109-122, 1994.



BIBLIOGRAPHY 77

[Ler95]

[Lis88]

[LSAST7]

[Mac85]

[Mey92]

[Nel91]

[Pie92]

[PT93]

[Sch94]

[Tes85]
[vG93]

Xavier Leroy. Applicative functors and fully transparent higher-order modules.
In Proc. 22nd ACM Symp. on Principles of Programming Languages, 1995.

Barbara Liskov. Data abstraction and hierarchy. In OOPSLA 87 Addendum
to the Proceedings, pages 17-34. ACM SIGPLAN Notices,23(5), May 1988.

B. Liskov, A. Snyder, R. Atkinson, and C. Schaffert. Abstraction mechanisms
in clu. Comm. ACM, 20:564-576, 1977.

D.B. MacQueen. Modules for Standard ML. Polymorphism, 2(2), 1985. 35
pages. An earlier version appeared in Proc. 1984 ACM Symp. on Lisp and
Functional Programming.

B. Meyer. Eiffel: the language. Prentice-Hall, 1992.

Greg Nelson, editor. Systems Programming in Modula-3. Prentice-Hall, Inc.,
New Jersey, 1991.

Benjamin C. Pierce. Bounded quantification is undecidable. In Proc 19th ACM
Symp. Principles of Programming Languages, pages 305-315, 1992.

Benjamin C. Pierce and David N. Turner. Statically typed friendly functions
via partially abstract types. Technical Report ECS-LFCS-93-256, University of
Edinburgh, 1993.

Angela Schuett. Parametric Polymorphism in a lype-safe, object-oriented pro-
gramming language. Williams College Senior Honors Thesis, 1994.

L. Tesler. Object Pascal report. Technical Report 1, Apple Computer, 1985.

Robert van Gent. TOIL: An imperative type-safe objecl-oriented language.
Williams College Senior Honors Thesis, 1993.



Appendix A

Complete grammar for LOOM

A.1 Module Syntax

Module ::= Interface | Implementation | Program
Interface ::= Interface <id> ImportList DeclList end
Implementation ::= Module Implements <id> ImportList;

Type AbbrevList Const ConstList end

Program ::= Program <id> ImportList AbbrevList UnitBlock
ImportList ::= Imports IdList; | ()
DeclList ::= Revelation; DeclList | ()
Revelation ::= PartialRev | Assertion
PartialRev ::= <id> <# TypeLxp
Assertion ::= <id> = TypeFEzp |

si= <id>: TypeFxp



APPENDIX A. COMPLETE GRAMMAR FOR LOOM 79

ConstList ::= <id> = FEzpr: TypeEzp
IdList ::= <id>;IdList | <id>
PathName ::= < id> | < interfacename >::< id >

A.2 Base Syntax

Program = PROGRAM id ";" InputFile Import VarIdlist AbbrevList
UnitBlock "."
InputFile = [INPUTFILE "=" STRNG [";"]]
Abbrevlist = [Type AbbrevDeclList ]
AbbrevDeclList = id "=" TypeExp {";" id "=" TypeExp}
[ll;ll]
VarIDList = id {"," id}
IDList = [VarIDList]
UnitBlock = ConstList VarList BEGIN StmtList END
FuncBlock = ":" TypeExp ConstlList VarList BEGIN
StmtList RETURN Exp [";"] END
Constlist = [CONST InitializedVarDeclList]
InitializedVarDeclList = id "=" FuncExp [";"]
| id n=n EXP II:II TypeExp [II;II]
| id "=" FuncExp ";" InitializedVarDeclList
| id "=" Exp ":" TypeExp ";" InitializedVarDeclList
VarList = [VAR VarDeclList]

VarDecllist = (VarIDList ":" TypeExp)



APPENDIX A. COMPLETE GRAMMAR FOR LOOM

TFuncParamDeclList =

FuncParamDeclList =

InitializedVarList =

MethodList =

MethodSection =

Methods =

NonEmptyTypelist
Typelist =

MethodTypes =

MethodTypeSection

ObjectMethods =

TypeExp =

{";" VarIDList ":" TypeExp} [";"]

VarIDList "<#" TypeExp [";"]
| VarIDList "<#" TypeExp ";"
TFuncParamDeclList
VarIDList "<#" TypeExp [";"]
| VarIDList ":" TypeExp [";"]
| VarIDList "<#" TypeExp ";"
FuncParamDeclList
| VarIDList ":" TypeExp ";"
FuncParamDeclList

[VAR InitializedVarDeclList]
[METHODS MethodSection]

(HIDDEN Methods | VISIBLE Methods)
{HIDDEN Methods | VISIBLE Methods}

id "=" FuncExp {";" id "=" FuncExp}[;]

TypeExp {"," TypeExp}

[NonEmptyTypeList]

[METHODS MethodTypeSection]

(HIDDEN VarDeclList | VISIBLE
VarDeclList)
{HIDDEN VarDeclList | VISIBLE
VarDeclList}

[[METHODS] [VarDeclList]]

id

id "["NonEmptyTypeList"]"

id "<#" TypeExp

MYTYPE
BOOL

80



APPENDIX A. COMPLETE GRAMMAR FOR LOOM

INTEGER

REAL

STRING

TOPOBJTYPE

TOPCLASSTYPE

FUNC "(" TypeList ")" ":" TypeExp

PROC "(" TypeList ")"

CLASSTYPE [INCLUDE TypeExp[MODIFYING
IDList ";"]] VarList MethodTypes
END

| OBJECTTYPE [INCLUDE TypeExp

[MODIFYING IDList

";"]0bjectMethods]
END
| TFUNC "[" TFuncParamDeclList "]"
TypeExp
| H(” id H)H
| "#" TypeExp
StmtList = {Stmt}
Stmt = Exp ":=" Exp ";"

| WHILE Exp DO StmtList END ";"

| IF Exp THEN StmtList {ELSIF Exp THEN
StmtList} [ELSE StmtList] END ";"

| Exp n(n ParamLiSt n)n n;n

| FOR Exp ":=" Exp TO Exp [BY Exp] DO
StmtList
END ;™
FuncExp = FUNCTION "(" [FuncParamDeclList] ")"
FuncBlock
| PROCEDURE " (" [FuncParamDeclList] ")"
UnitBlock
ParamlList = {Param}
Param = Exp

| TypeExp



APPENDIX A. COMPLETE GRAMMAR FOR LOOM

Exp

id

integer

real

boolean

string

SELF

NIL

TOP

Exp "(" ParamList ")"

w(" Exp INFIXOP Exp ")"

Exp "." id

SUPER "." id

FuncExp

NEW "(" Exp ")"

CLASS [INHERIT Exp [MODIFYING
IDList] ";"]InitializedVarList
MethodList END

SCETIDE

82



Appendix B

Complete type checking rules for
LOOM

Definition B.0.1 (Type Constraint System) Relations of the form o <# 1 where o and
T are type expressions, are said to be type constraints. A type constraint system is defined
as follows:

1. The empty sel, €, is a type constraint system. In general we will denote an empty type
constraint system as C,.

2. IfC is a type constraint system, T is a type variable or a type of the form ObjectType(Mytype)o,
and t <# T is a lype conslraint such that the type variable t does nol appear free in C
or 7, then C'U{t <# 1} is a type constraint system.

So, C keeps track of matching constraints placed on type variables in the current scope. E
holds variable names and the types associated with them. The formal definition of E is as
follows:

Definition B.0.2 (Type Assignment) A type assignment E is a finite set of associations
between variables and type expressions of the form x: 7, where each x is unique in E. If the
relation z: 7 € E, then we write E(z) = 7.

Definition B.0.3 (Equivalence Table) Relations of the form t = o are type equiva-
lences. An equivalence table is defined as such:

1. The emply set, €, is an equivalence table. In general we will denote an empty equiva-
lence table as ST,.

2. If ST is an equivalence table, T is a type, t is a type variable that does not occur in
ST, andt = 7 is a type equivalence, then ST U{t = 7} is an equivalence table.

83



APPENDIX B. COMPLETE TYPE CHECKING RULES FOR LOOM

B.1 Matching rules

We say that {m;: ;}'S°<" extends {m;: ;' SISF if o > k.

Var(<#) CU{t<#TIEL<H#T,
CF

ReJl(<#) T

Trans( <#) Crosr

Cu{t<dto}bt<gr’

o extends o', T extends T’

i sObiT
VisObjType( <) C + VisObjType(o, ) <# VisObjType(o’,7') ’

T extends 7'
C'+ ObjectType T <# ObjectType 7'’

ObjectType( <##)

B.2 Base language type checking rules

Type Assignment Rules (Program):

Co, Eg - Block: COMMAND
Co, Eg F program p; Block. : PROGRAM

Type Assignment Rules (Declarations):

84

Note that these type assignment rules for declarations actually produce a new environment,

E.
C,EF CDcLstr> E'
ConstDects C,E I const CDclLst> E'
EFCDelr> E E'+ CDclLst> E"
ConstDcl+ ¢, CDc>E, C, CDclLst >

C,EF CDcl; CDclLst> E”

where 2 does not occur in E.



APPENDIX B. COMPLETE TYPE CHECKING RULES FOR LOOM

C,EF-M:T1
C,EFz=M:r>EU{z:7}

ConstDcl

where 2 does not occur in E.

C,Et VDcLst> E

,
VarDels C,Et+ var VDclLst > E’
VarDelt C.EF VDel>E, C,E'F VDelLst> E”
are C.EF VDel; VDclLst> E
VarDecl C,EFa:t pEU{z:refT}

where 2 does not occur in E.

Type Assignment Rules (Blocks):

C,EF CDcls>>Eq, C,E1F VDcls> Eg,
C,E; - S:COMMAND, C,EsF M:o

Block
¢ C,E CDcls VDcls begin S return M end: o

Type Assignment Rules (Commands):

C,EFaz:refr, C,EFM:T

Assn C.EF z:= M: COMMAND
Cona C.EF B:Bool, C,EF S: COMMAND, C,E+ T: COMMAND
on C.EFif B then S else T end: COMMAND
W hil C,E+ B:Bool, C,EF S:COMMAND
e C,EF while B do S end: COMMAND
. C,EF S:COMMAND, C,EF 7: COMMAND
StmtList

C.EF S; T:COMMAND

Type Assignment Rules (Expressions):

85



APPENDIX B. COMPLETE TYPE CHECKING RULES FOR LOOM

Program C,EF OK:PROGRAM
Command C,EF command: COMMAND
Nil C,EF nil: L
Constant C,EFc¢:71, forc™ €C
Var C,EFa:r, if E(z) =1
Value C,EF-M:refr
C,EFval M:1

C,EU{v:o}F Block:T
C,E | function (v:o) Block: (Func (0):7)

Function

where ¢ may be of the form #-~.

CU{t<#~v},E F Block: T

BdPolyF
o e C,Et function (¢ <#+) Block: (Func (t <#~):1)
C,EF f:Func(o):7
C,EFM:o
FuncAppl ’
unearp C,EF f(M):7
C,EF f:Func(t <g#~):T
Cho<#~y
BdPolyFuncAppl
oYT ey C.EF flo]:r[o/1]
CV Et a:o, CMETH EMETH L o 7
Class d - ! g

C,EF class(a,e): ClassType(o, 7)

86



APPENDIX B. COMPLETE TYPE CHECKING RULES FOR LOOM 87

where !V = C U {MyType <# ObjectType 7},
CMETH — ¢V [SelfType <# VisObjType(o, 1)},
EMETH — B {self: Self Type, close: Func(SelfType): MyType}
Neither MyType nor SelfType may occur {ree in C or E.
o and 7 must both be record types, while the components of 7 must be function types.
Inherits

C,EF c:ClassType({vi:01;...;0m:0m}, {mai 1. ..y myui Th}),

1A% . v /.
C"",EFant1:0ms1, CV EFajioy,
CMETH7 EMETH - €nt1iTnils CMETH7 EMETH [ 6/117'1

C, E I class inherit ¢ modifying vy, my;
({’01 = alli 01, Um+1 = Gm41: Um—}—l}; {m1 = 6/13 T1, Mp41 = €41t Tn+1})1
ClassType({v1: 01} ...} Unq1: Ot }5 110713 M2 T2} o o5 Mgt Tyl })
where CIV =CuU {MfyType <# ObjectType {my:71;...;Mmpr1: Tny1}},
CMETH _ ¢V {SelfType <# VisObjType({vi:01;...; Umi1: Oyt ),

{myiTis . mpgae Tn+1})}
EMETH — B U {self: SelfType, close: Func(SelfType): MyType,
super: SelfType — {mq:7m;...;m,: 7} }
Neither MyType nor SelfType may occur free in C or E.

C,EF c:ClassType(o, 7)

bject
Objec C,EF new c: ObjectType T
. C,EFeT
Weakening m
Sub Cro<#r, C,EFe#o
oSy C,EF e #r
M C,EFo:vy, Ck~y<#ObjectType{m: 1}
> C,ElF o< m:7[y/MyType]
Mg C,EF o:#O0bjectType{my:71;...;mp: 7, }

C,ElF o< m;:r[#0bjectType{my: 11;...;m,: 7,} /MyType]
Ouly if all occurrences of MyType in 7 are positive.

C,EF 0:#VisObjType({vi:01;...;v,:0,},7)

InstVar C,EF o.v;:ref(o;)




APPENDIX B. COMPLETE TYPE CHECKING RULES FOR LOOM

B.3 Module type checking rules

Lists of declarations. (Reveals relation)

(DecL: () S, Mg, My - emptyDecLst 2 (M, M)

-

SuU {t},MeB',M%/ F DecLst 2 (MG, Mi")
S, MG, Myt <t 7; DecLst ~> (./\/l%",./\/liB”)

(DecL: <#)

where M%' = M5 & (B::t <#Rg(7,8)) and MYy = Mi; & (t<gtT)

Su{t}, M%', M%/ F DeclLst
S,M%G, My -t =71; DecLst

(DecL: =)

where M%' = M5 & (B:t = Rg(7,8)) and My = Miy & (t=r1)

S,MSB’7_/\/UB’ E DecLst ™ (MSB//7MZ'B//)
SaMeBaMiB |_ i:T; Decl st ,3 (MSB//,MiB//)

(DecL: const)
’ E o .
where M%' = Mg = (B:e:Rg(7,S)) and My = M (e:7)

Definition Lists

(DefL:0) C,E,STF emptyDefLst

o C,E,STU{t = 7} F DefLst
(DefL: =) C,E,STHt=r1;DefLst

88



APPENDIX B. COMPLETE TYPE CHECKING RULES FOR LOOM

C,E,STkeT
C,STFr =1
C,E U{f:7},STF DefLst

(DefL: const) C,E,STF f=e:r;DefLst

Consistent with relation

(<:0) C,STFemptyDefLst <« ({},{},ST4)

(t<#7')ely, C,STHT<HT
(<: <) C,STU{t = 7}t rest <« (Ca—{t<#71'},E4,ST4)
' C,STHt=r7;rest <« (Ca,E4,ST4)

(t=171)€eST4, C,STFT =1/
C,STU{t = 7} Frest <« (C4,E4,ST4—{t = 7'})

(<k:=) C,STHt=r1;rest <« (Ca,E4,ST4)
(t<#7")¢Ca, (t = 71)¢STy
o C,STU{t = 7} F rest <« (Ca,E4,ST4)
(< hid) C,STHt=rT1;rest <« (Ca,E4,ST4)
(f:7)€Ey, C,STHT =7
(< : const) C,STFrest <« (Ca,Ea—{f:7"},STa)

C,STF f=eT;rest <« (Ca,E4,ST4)

89



APPENDIX B. COMPLETE TYPE CHECKING RULES FOR LOOM

(f:7") ¢ Ex
C,STt rest <« (Ca,E4,5Ty)

s hid t
(<* 1 COHS) C,STF f=e:T;rest <x (CA,EA7STA)

Module Lists

ModLst: Z,E+ emptyModLst: T

abbrevs = STp '
I(B) = ((CBv Eg, STB)v MZB)
Cp,Ep,STgUSTpt BlockZ, E+ ModLst:T'
Z,Et Program P Import B Abrvs Block;ModLst: Program

ModLst: Program

S,y My, MG F DecLst 2 (M5, M)
ZU{(A, M4 MDY}, EF ModLst: '

ModLst: Int
oanst i Z,E - Interface A Import B DecLst; ModLst:T'

where Z(B) = (M%, M)

T(A) = (M, (Ca By, ST4)
I(B) =((C,EpB,STpg), M%)
STg,CgF DefList <x (CA,EA,STA)
Cp,EB,STpUST4+ DefLst, T,Et rest:1'

ModLst: I
(ModLst: I'mp) Z,E - Module Implements A Import B DefLst; rest: 1’




APPENDIX B. COMPLETE TYPE CHECKING RULES FOR LOOM 91

B.4 Algorithmic type checking rules

There are two major distinctions between the formal and algorithmic rules for type checking
in LOOM. Firstly, note that in almost all cases it is necessary to perform explicit calls
to the equivalence or matching algorithms to insure that inferred types for expressions are
consistent with their declared types. Secondly, note that there is no explicit notion of
subsumption weakening in the algorithm. It is not likely that the formal rules are strictly
decidable (or at least deterministic)due to the inclusion of these rules. Instead the notions
of subsumption and and weakening are used implicitly within individual rules. To facilitate
this, we define a function mat?eq as defined below, which handles calls to the equivalence
and matching algorithms.

Definition B.4.1 For types 7 and o, where either type may be of the form #~ for some
v, the function mat?eq(C,ST,7,0) is defined as follows:

mat?eq(C,ST, #7,#0) if match(C,T,0)
mat?eq(C,ST,7,#0) if match(C,T,0)
mat’?eq(C,ST,7,0) if equiv(C,T,0)

and
mat?eq(C,ST, {mq:7o;...;mj: 7}, {n1io1; .. im0y ..y nji05})
if mat?eq(C,ST,,0;)
and mat?eq(C,ST, {mq:79;...;mj: 7, }, {niy1: 04415 . . .5 0105 })

The first important difference is the case for handling assignment. Note that in LOOM,
a variable may potentially hold objects that match a certain type, as opposed to simply
have a certain type. However, if the type of the variable was not explicitly declared as a
hash type, we require that the types be identical. We use the function MatchEq defined
above to enable us to handle both cases with a single rule.

C,EFz:refr, C,EFM:o
C,STF mat?eq(C,ST, o0, 7)
C,EFz:= M:COMMAND

Assn

where both ¢ and 7 may be hash types - that is they each may be of the form #+ for
some 7.

The case for function applications is handled differently depending on whether the type
of the formal parameter is an exact type or a hash type. Note also even in the exact case,
we need to make an explicit call to the equivalence algorithm (via mat?eq(C,ST, o, 0')) to
check that the inferred type of the actual parameter is the same as the declared type of the
formal parameter.



APPENDIX B. COMPLETE TYPE CHECKING RULES FOR LOOM 92

C,E,STF f:Func(o):7
C,E,STHM:o'
C,ST + mat?eq(C,ST, o,0)
C,EF f(M):T

FuncAppl

The cases for classes and inherits are similarly different to account for the possibility
that the types of instance variables are given as hash types, and hence may receive values
of different types. Note that we only present here an algorithmic version of the case for
classes, as the inheritance case differs analogously from the formal version.

CV E,STra:o
CMETH EMETHGT |- ¢, .0 Thid
CMETH EMETHGT ¢ . . T

C,STF equiv(C, Thiq, 77,;,)
C,ST + equiv(C, Tyis, 7o)
C,STF mat?eq(C,ST,0,0)

l
Class C,E,STF class(a, (€nid, €vis)): ClassType(o, (Thid, Tuvis))

where C'V' = C U {MyType <t ObjectType Tyis},
CMETH — ¢V | {SelfType <# VisObjType(a, (Thid, Tvis)) },
EMETH — B U {self: SelfType, close: Func(SelfType): MyType}
Neither MyType nor SelfType may occur free in C or E.
O, Thid, and T,;s must be record types, while the components of 75,4, and 7,;s must be
function types.



Appendix C

Complete semantic rules for

LOOM

Definition C.0.2 (Environment) An environment p contains bindings of identifiers to
values, such as closures, locations, classes etc. The notation p[v/z] denotes the binding of
value v to identifier f. If identifier f is bound in p to value v, we write p(z) = v.

See [BSv(G95] for a more in depth discussion of the semantic rules of languages such as

LOOM.

C.1 Base language semantics

We assume that all terms below have been successfully type checked. In rules where types
appear, terms have the same type as was given in the corresponding type-checking rule. A
“primed” type (e.g., 7) is generally an abbreviation for the type obtained by applying the
substitution from the environment (e.g., 7/ = 7,).

Program:
Program (Block, po, 50) | (command, s)
g (program p; Block., pg, so) 4 (OK,s)
Declarations:
(CDclLst,p,s) | (p, )

tDel
Consthets (const C'DelLst, p,s) | (p',s")’
ConstDcl+ (CDcl,p,s) | (p',5'), (CDelLst,p',s') | (p", ")

(CDecl;CDelLst, p,s) | (p",s") '

93



APPENDIX C. COMPLETE SEMANTIC RULES FOR LOOM

ConstDcl

VarDecls

VarDecl+

VarDecl

(M, p,s) | (V,s)
(z=M,p,s) | (plz — V]vsl) ’

(VDelLst, p,s) | (p', ')
(var VDclLst,p,s) | (p',s)’

(VDcl,p,s) | (p',s"), (VDclLst,p' s") ] (p",s")

(VDel;VDelLst, p,s) | (p",s")

(newLoc, s') = (GetNewLoc s 7' V)
(z:7,p,8) ) (plz — newLoc), s)

9

where 7 = (1), and V is the default value for type 7'.

Blocks:

Block

Commands:

Assign

Conditionalyy .

Conditional fq15¢

whileg, e

(CDcls, p, s) | (p1,51), (VDels, p1,s1) | (p2, $2),
(S, p2,82) | (command, s3), (M, pa,s3) (V,s')

(CDcls VDcls begin S return M end, p,s) | (V,s')

(2,0,9) L (Loc, &), (M,p,s) | (V, ")
(z:= M, p,s) | (command, s"[Loc+s V])’

(command, s”)

(B,p,9) L (true, ), (5,p,5)
(if B then S else 1" end, p, s)

!
} (command, s")
(B, p,s) | (false,s'), (T,p,s') ] (command,s")

(if B then S else T end, p, s) | (command, ") ’

(B,p,s) | (true,s"), (S,p,s") | (command,s”),
(while B do S end, p,s”) | (command, s"')
(while B do S end, p, s) | (command, s") ’

?

94



APPENDIX C. COMPLETE SEMANTIC RULES FOR LOOM 95

(Bv P S) \lf (falsev 5/)

while fatse (while B do S end, p, s) | (command, s) ’
Sequence (S,p,s) | (command,s’), (T,p,s")| (/c/ommand, s")
(S; T, p,s) | (command, s”)
Expressions:
Constant (¢,p,s) ] (¢,s), where ¢ is a constant
Variable (z,p,s) ) (p(z),s), where x is a variable
! ! =V
Value (M, p,s)d (Loc,s'), s (L:)C) i ’
(Val M, p, 5) \J (Vv S)
Function (function(v: o) B, p, s) | ({(function(v: o) B, p), s),

where ¢ may be of the form #-~.
BdedPolyFunc  (function(t <#v)B, p,s) | ((function(t <#v)B, p), s),

(f,p,s°) | ((function(v: o) B, ps), s'), (M,p,s*) | (V1,s?),
(B, Pf[vHV] s 1 (V.87

l
(f(M),p,s°) L (V. s7) ’

FuncAppl

where ¢ may be of the form #-~.

(f,p,s°) | ((function(t <#v)B, ps), s'),

(B7 p [t — UP] ) \l/ (‘/7 52)
BdedPoly FuncAppl ’
(flo],p,s%) L (V,s%)
Reegrd (eivpvsi)*l/(vivsi-l—l)v 1<i<n

Umy=epi:m,...,mp =€}, p,80) L ({my = Vi (T1) oo v i = Vi (10) , 1 sty



APPENDIX C. COMPLETE SEMANTIC RULES FOR LOOM 96

(e,p,8)d ({m1=Viir,....m, = V,:7.},§)
(e.miyp,s) ) (Vi, s') ’

FieldFxt

(av p/7 5) \L (‘/m Sl)v (67 P/7 5/) \L (‘/67 S”)

l
Class (class(a, €), p, s) | (class(V,, Vi), s")

where p' = p\{self, close, Self Type, MyType}

(av p/7 5) \l/ (‘/av S/)7 (67 p/7 S/) \l/ (‘/67 S”)
(obj(a, €), p,5) | (0bj(Va, Vo), s")

Object

where p' = p\{self, close, Self Type, MyType}

(c;pys)  (class({vr = Vitoq, ..., v, = Viioy}, Methods), sY),
(newLoc;, s') = GetNewLoc s o/ V! for 1 <i < n,
Nﬁ?ﬁ”c”ewLOCnH, s"t1) = GetNewLoc s™ VisObjType(o’, 7') obj(newlV, newMethods)
y €t 7’L+1) 3

new c, p,s) | (newLoc,y1,s
P Locyy

where o’ = 0, = {vi:01;.. ;v 0L}, 7/ = 7, for p’ = p\{self, close, SelfType, MyType},

o' = 0/[ObjectType 7'/MyType|

V! = V;[ObjectType 7'/MyType]),

newlV = {v; = newLocy:ref( )of,...,v, = newLoc,:ref( oy},

o' = obj(newlV, Methods),

if Methods = {{f1,p1),---,{fk,pr)} then newMethods = {(f1,p}), .., (&, Pl)}

where for 1 <1 < k,

pi = pi[self = o', close = close(,1 11y, Self Type — VisObjType(d’, 7'),

MyType — ObjectType 7']

(0,p,8) 1 (,8),
(newLoc,s") = GetNewLoc s' VisObjType(o', ') obj(V,, newMethods)

(close(sr 71y 0,p,5) | (newLoc, s")

Close

?

where o/ = 0,, 7" = 7, for p’ = p\{self, close, Self Type, MyType},
o' = obj(V,, Methods),
if Methods = {{f1,p1),-.-,{fx,pr)} then newMethods = {(f1,p}), .., (&, pl)}
where for 1 <1 <k,
pi = p[self = o, close +— close(yr 11y, SelfType — VisObjType(d’, '),
MyType — ObjectType 7']



APPENDIX C. COMPLETE SEMANTIC RULES FOR LOOM 97

(0,p,8) ) (Loc,s"), s'(Loc)=obj(V,,{m1=Vi:r{,....m, =V,:7 })
(O = My, p, S) \J (Vlv 5,)

(e,p,8) | (nil,s)

(e <= my,p,s) | (errorqi,s')’

Message

FErrorMessage

where 7/ = 7, and 7 is the type of e < m;.

(0,p,8) | (obj({vy = Vi1, ..., v, = Vyio0}, Vo), )

Inst /bl
nstanceVble (00r,p8) b (Vi, &) )
(c;py ) (class({vr = Virol, ..o, Vupa = Vora: Oppgs -y Un = Vi oy}, V), 8),
Inhertt (u £ %) & (Vnew, )

(class inherit ¢ modlfylng Vupd; ({Vupd = w: O'upd} {}) p,s)
(class({vy = Vi1, ..o, Vupd = View: Orpgy - -+ Un = Vii oy}, Ve), 87)
where p' = p\{self, close, Self Type, MyType},

O'Z/' = (Ui)p/.

(c,py8) L (class(Vy, {m1 = Vii 7, oy mupd = Vora: Topgs -+ s = Vi 7, 3), 87),
e (1.7,) 4 Vi)
' W(Elass inherit ¢ modifying mupd, ({3, {mupd = w /pd}) p,s)d '
(class(Va, {m1 = Vir7{, ..., mypd = Vipa: sy, = Vi1l 1), s7)

upd’ ..
where sup = (function(self: Self Type).{m; = Vi:7{,...,mupd = Vora:7lpgs ..., my =

Va3 p)
p' = p[super — sup]\{self, close, Self Type, MyType}

7= (Ti) -

Inheri ig’p’ + (Class({vl =W .Uiv =V .0-7/2} Ve)v S/)v (u,p, S/) } (V +1,5 /)
" (class inherit ¢ ({vnq = u: O'n_H} {H,p,9) 4

9

(class({vy = Viioq, ..o, v = Vit o, Ungr = Vigri o)1 1, Ve), 87)
where p' = p\{self, close, Self Type, MyType},
ol = (O'Z')p,.
Inherggﬂp L (class(Vy, {my = Vii7], ... omu, = Vit 1), s, (u,p'y ') L (Vigr, s”)
(class inherit ¢ ({}, {mp41 = w Tn+1}) p,s)d '
(class(Vy, {my = Viir{, ... ,my = Vi) g = Viga: 7)1 1), 87)

where p' = p\{self, close, Self Type, MyType},

TZ'/ = (Ti)p/ .



APPENDIX C. COMPLETE SEMANTIC RULES FOR LOOM

C.2 Module semantics

emptyDecLst

DecLst

emptyDe fLst

DefLst

DefLst

Module Lists

ModLst: ()

(emptyDecLst) |V ()

(decLst) | N N
(f:7;decLst) ¥ (N U {f})

(emptyDefLst, piv“vv Pes S) \Ld (p67 8)

feN
(67 Pi, S) \l/ (’U, 8/)
(DefLst, pilv/ [l N, pelv/A:: £l s) 12 (oL, s")

((J = €73 DefLst), pis Ny pey ) 47 (ol 5”)

féN
(67 Pi S) \l/ (’U, S,)
(DefLst, pi[v/ [, N, pe, s') 1* (pl, s")
((f = ermyDefLst), pi, N, pe,s) 1 (oL, s")

(emptyModLst, %, po, s) 1¥ (3, 5)

98



APPENDIX C. COMPLETE SEMANTIC RULES FOR LOOM 99

S(B) = (NB,pB), (decLst) |V N
(ModLst,> U {(A,N,pBUp,)}, poss) I¥ (X))

ModLst: Int S
(Interface A Import B decLst;ModLst, %, p,,s) 1= (X', s")
Y(A) = (N4, pa), E(B)= (Np,pB)
(defLStv paU va-/V’v (Dv 5) \l/d (plv 8/)
ModLst: Imp (MOdLStv (E - {(Av“/\[Av pA)}) U {(Av-N‘Av pl)}v Pos 3/) *LE (Elv 8//)

(Module Implements A Import B defList;ModLst, ¥, p,, s) - (X', s

%(B) = (NB, pB)
(BlOCkv PoJ PB; S) \l/ OK
Program P Import B Abrvs Block, >, p,, s) | OK
p

ModLst: Program



Appendix D

Example LOOM programs

D.1 Sets with efficient intersection

Interface IntOrdList;

OrdListType = ObjectType
find:func(Integer) :bool; --find an element
first: proc(); --move to the first element (off if empty)
next: proc(); --move to the next elt (off if at end or off)
off: func():Boolean; -- is current elt off end of 1list?
add: proc(Integer); --add an elt, maintaining ordering
deleteCur: proc(); -- current is next elt after deleteCur
contains: func(Integer):Boolean; --is param in list (bsearch)
getCur: func():Integer --get the current element

end;

IntSetType = ObjectType include OrdListType

remove :proc(Integer); --remove an element

intersect: proc(MyType) --receiver contains the intersection
end; --note intersect is destructive!
OrdListClassType = ClassType ... end;

OrdListClass: OrdListClassType;

end;

100



APPENDIX D. EXAMPLE LOOM PROGRAMS 101

Interface SetOfInt;

IntSetType <# ObjectType
add: proc(Integer);
remove: proc(Integer);
contains: func(Integer) :Boolean;
intersect: proc(MyType)
end;

function newSet(): IntSetType;
end; —- Interface Set0fInt

Module Implements SetOfInt import IntOrdList;
type

IntSetType = ObjectType include IntOrdList::0rdListType
remove :proc(Integer);
intersect: proc(MyType)

end;

ListSetClassType = ClassType include IntOrdList::0rdListClassType;
methods visible
remove :proc(Integer);
intersect: proc(MyType)
end;

const
ListSetClass = class inherit IntOrdList::0rdListClass
methods visible
procedure remove(elt:Integer) is
begin
if find(elt) then deleteCur()
end;
procedure intersect(other:MyType) is
begin
first();
other.first();
while (not off()) and (not other.off()) do



APPENDIX D. EXAMPLE LOOM PROGRAMS 102

if getCur() < other.getCur() then
deleteCur()
elsif getCur() > other.getCur() then
other.next()
else
next();
other.next()
end
end -- while
while not off() do
deleteCur()
end -- while
end —- function
end:ListSetClassType; -- class

function newSet() :IntSetType;
begin
return new(ListSetClass)
end;

end —- Module

D.2 Type functions vs. hash types - A comparison

D.2.1 Points and ColorPoints using TFuncs

program points_tfunc;

-- note that things of type (#)PointTypel[measurable] (p,p3 below)

-- are very flexible in what they can take as parameters to eq

-- but are restricted in assignment,

-- whereas things of type #PointTypel[colorMeasurable] (p4 below)

-- are flexible in what can be assigned to them but restricted in eq

type
measurable = ObjectType
getx, gety:func():integer;
end;
colorMeasurable = 0ObjectType include measurable
getColor:func() :integer;
end;



APPENDIX D. EXAMPLE LOOM PROGRAMS 103

PointClassType=TFunc[T<#measurable] ClassType

var
X, y:integer;

methods
VISIBLE
getx, gety:func():integer;
move:proc(integer,integer);
eq:func(#T) :bool;
origin:proc();

end;

PointType=TFunc [T<#measurable] ObjectType
methods
getx, gety:func():integer;
move:proc(integer,integer);
eq:func(#T) :bool;
origin:proc();
end;

ColorPointClassType= TFunc[T<#colorMeasurable]
ClassType include PointClassTypel[T]
var
color:integer;
methods
VISIBLE
setColor:proc(integer);
getColor:func() :integer;
end;

ColorPointType=TFunc [T<#colorMeasurable] ObjectType include PointTypel[T]
getColor:func() :integer;
setColor:proc(integer);
end;

const startX = 60 :integer;
startY = 60 :integer;
jumpX = 4 :integer;
jumpY = 4 :integer;



APPENDIX D. EXAMPLE LOOM PROGRAMS 104

PointClass = function(T<#measurable) :PointClassTypel[T]

begin
return
class
var
x=0:integer;
y=0:integer;
methods
visible
getx= function():integer begin return x; end;
gety= function():integer begin return y; end;
move= procedure(newX, newY:integer)
begin
X := newX;
y := newY;
end;
eq= function(comparePt:#T) :bool
var isEqual:bool;
begin
if ((x = comparePt.getx()) &
(y = comparePt.gety()))
then isEqual:=TRUE;
else isEqual:=FALSE;
end;
return isEqual;
end;
origin = procedure()
begin
move(0,0);
end;
end;
end;
ColorPointClass =
function(T<#colorMeasurable) :ColorPointClassType[T]
begin
return

class inherit PointClass(T) modifying eq;
var
color=0:integer;



APPENDIX D. EXAMPLE LOOM PROGRAMS 105

methods
visible
getColor = function():integer begin return color; end;

setColor = procedure(newC:integer)
begin
color := newC;
end;

eq= function(comparePt:#T) :bool
var isEqual:bool;
begin
isEqual:=FALSE;
if (super.eq(comparePt) &
(color = comparePt.getColor()))
then isEqual:=TRUE;
end;
return isEqual;
end;
end;
end;

var
cp:ColorPointTypel[colorMeasurable] ;
cp2:#ColorPointType [colorMeasurable] ;
p:PointType[measurable];
p2:PointTypel[colorMeasurable] ;
p3:#PointType[measurable];
p4:#PointType[colorMeasurable];
x:BOOL;

begin

cp:=new (ColorPointClass(colorMeasurable));
cp2:=new (ColorPointClass(colorMeasurable));

p:=new (PointClass(measurable)); --Legal
—--p:=new (PointClass(colorMeasurable)); --Illegal
--p:=new (ColorPointClass(colorMeasurable)); --Illegal

—--p2:=new (PointClass(measurable)); --Illegal
p2:=new (PointClass(colorMeasurable)); --Legal
--p2:=new (ColorPointClass(colorMeasurable)); --Illegal



APPENDIX D. EXAMPLE LOOM PROGRAMS 106

p3:=new (PointClass(measurable)); --Legal
--p3:=new (PointClass(colorMeasurable)); --Illegal
--p3:=new (ColorPointClass(colorMeasurable)); --Illegal

—--p4:=new (PointClass(measurable)); --Illegal

p4:=new (PointClass(colorMeasurable)); --Legal
p4:=new (ColorPointClass(colorMeasurable)); --Legal
x:=cp.eqlcp);

x:=cp.eq(cp2);

--x:=cp.eqlp); --Illegal

--x:=cp.eq(p2); --Illegal

--x:=cp.eq(p3); --Illegal

--x:=cp.eq(p4d); --Illegal

x:=cp2.eqlcp);
x:=cp2.eq(cp2);

--x:=cp2.eq(p); --Illegal
--x:=cp2.eq(p2); --Illegal
--x:=cp2.eq(p3); --Illegal
--x:=cp2.eq(p4); --Illegal
x:=p.eqlcp);

x:=p.eq(cp2);

x:=p.eqlp);

x:=p.eq(p2);

x:=p.eq(p3);

x:=p.eq(p4d);

x:=p2.eqlcp);

x:=p2.eq(cp2);

--x:=p2.eq(p); --Illegal
--x:=p2.eq(p2); --Illegal
--x:=p2.eq(p3); --Illegal
--x:=p2.eq(p4); --Illegal
x:=p3.eqlcp);

x:=p3.eq(cp2);
x:=p3.eq(p);



APPENDIX D. EXAMPLE LOOM PROGRAMS 107

x:=p3.eq(p2);
:=p3.eq(p3);
x:=p3.eq(p4);

™

x:=p4.eq(cp);
x:=p4.eq(cp2);
--x:=p4.eq(p); --Illegal
--x:=p4.eq(p2); --Illegal
--x:=p4.eq(p3); —-Illegal
--x:=p4.eq(p4d); --Illegal

end.

D.2.2 Points and ColorPoints using hash types

program points;

--nothing with a pound type below can be sent an eq message, because
--of the rule for message send.

--Things of type PointType can take anything else as a parameter to eq.
--Things of type #PointType can be assigned anything.

type
PointClassType=ClassType
var
X, y:integer;
methods
VISIBLE
getx, gety:func():integer;
move:proc(integer,integer);
eq:func (#mytype) :bool;
origin:proc();
end;

PointType=0bjectType
methods
getx, gety:func():integer;
move:proc(integer,integer);
eq:func(#mytype) :bool;
origin:proc();



APPENDIX D. EXAMPLE LOOM PROGRAMS

end;

ColorPointClassType= ClassType include PointClassType
var
color:integer;
methods
VISIBLE
setColor:proc(integer);
getColor:func() :integer;
end;

ColorPointType=0bjectType include PointType
getColor:func() :integer;
setColor:proc(integer);
end;

const startX = 60 :integer;
startY = 60 :integer;
jumpX = 4 :integer;

jumpY = 4 :integer;
PointClass = class
var
x=0:integer;
y=0:integer;
methods
visible
getx= function():integer begin return x;
gety= function():integer begin return y;
move= procedure(newX, newY:integer)

begin
X := newX;
y := newY;
end;

eq= function(comparePt:#mytype) :bool
var isEqual:bool;
begin
if ((x = comparePt.getx()) &
(y = comparePt.gety()))
then isEqual:=TRUE;

end;
end;

108



APPENDIX D. EXAMPLE LOOM PROGRAMS

else isEqual:=FALSE;
end;
return isEqual;
end;
origin = procedure()
begin
move(0,0);
end;
end:PointClassType;

ColorPointClass = class inherit PointClass modifying eq;

var
color=0:integer;
methods
visible

getColor = function():integer begin return color;

setColor = procedure(newC:integer)
begin
color := newC;
end;

eq= function(comparePt:#mytype) :bool

var isEqual:bool;
begin
isEqual:=FALSE;

if (super.eq(comparePt) &
(color = comparePt.getColor()))
then isEqual:=TRUE;

end;
return isEqual;
end;
end:ColorPointClassType;

var
cp:ColorPointType;
cp2:#ColorPointType;
p:PointType;
p2:#PointType;
x :BOOL;

begin

end;

109



APPENDIX D. EXAMPLE LOOM PROGRAMS

cp:=new (ColorPointClass);
cp2:=new (ColorPointClass);

p:=new (PointClass);

p2:=new (ColorPointClass); --legal
p2:=new (PointClass);

x:=cp.eqlcp);
x:=cp.eq(cp2);
—--x:=cp.eq(p); --Illegal

--no legal eq for cp2, since cp2.eq:#MT->bool

—-x:=cp2.eq(cp); --Illegal
—--x:=cp2.eq(cp2); --Illegal
--x:=cp2.eq(p); --Illegal
--x:=cp2.eq(p2); --Illegal

:=p.eq(p);
:=p.eq(p2);
:=p.eqlcp);
:=p.eq(cp2);

Lol T T

--no legal eq for p2, since p2.eq:#MT->bool
--x:=p2.eq(p); --Illegal

--x:=p2.eq(p2); —--Illegal

--x:=p2.eq(cp); ——Illegal

--x:=p2.eq(cp2); --Illegal

110



